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Abstract
The study of two-sided matchings—where we seek to pair agents on opposite sides
of a market based on their ranked preferences—is a cornerstone of market design eco-
nomics. With real-world applications ranging from school choice and medical residency
to job assignment, understanding the properties of these matching markets provides
immense theoretical and practical value. In this thesis, we start with the foundations
of matching theory, building up a framework to analyze the set of stable matchings—
ones where no matched pair mutually prefers another assignment. We then build off
this work to analyze the asymptotic behavior of stable matchings, as proven by Pittel
[11], [12]. Broadening our scope from dissecting individual outcomes, we instead focus
on proving bounds for the expected number of stable matchings and the expected min-
imum and maximum rank of stable matchings in symmetric markets with complete
preferences.
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1
Foundations of MatchingMarkets

This chapter provides a history of two-sided matching markets, with a focus on the evolu-

tion of theoretical work and the applications that spurred them. We start with a problem

that illustrates the practical importance of matching, which then motivates the founda-

tional theory of the field. From this, we explore the connections between two-sided mar-
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kets and market design more broadly, examining key applications and future directions of

research. We then narrow our focus to the study of the number and rank of stable match-

ings, which will comprise the majority of this thesis.

1.1 Motivating Problem

Consider a remote village with two groups of people, whom we’ll call men and women.

In this village, people want to get married to someone in the opposing group and to make

things easier, each person provides a ranking of potential marriage partners based on their

preferences. Of course, it’s possible to simply assign pairs randomly and hope for the best.

However, this could lead to two quite problematic scenarios: either a person prefers to

be alone than with their partner, or two people in separate marriages prefer each other to

their assigned partners. These two concepts are denoted individual rationality and stabil-

ity respectively and will be considered in detail in Chapter 2.

In the simplest case, if there is only one man and no women, then the matching is trivial.

If we now add a woman, then there are two options: either they are married to each other

in the stable matching or at least one of them prefers being alone, in which case there are

no matches. Extending this line of reasoning, if there is 1 man and n women, in the stable

matching either the man is married to his highest ranked partner who prefers him over

being alone or there are no matches.

However, what happens when we further push this reasoning to n men and n women? Is

there always a stable matching that exists? Could there be more than one stable matching

for a given setup?
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1.2 Gale-Shapley and the Algorithmic Solution

Gale and Shapley asked, and then subsequently answered this question in their seminal

1962 paper College admissions and the stability of marriage [4]. In their work, the stable

marriage problem is a subset of the more general college admissions framework, where n

applicants are applying to m colleges, each of which has an integer quota qi ∈ [1, n] for

i ∈ [1,m]. Akin to the preference orderings between men and women, each applicant and

college also ranks the members of the opposing set. Gale and Shapley proved that a stable

marriage always exists and provided the following important proof by construction:

Theorem 1.1 (Deferred Acceptance Algorithm): There always exists a set of stable mar-

riages.

Proof:

Algorithm 1Deferred Acceptance
Step t = 1:
1. Each man proposes to his most-preferred woman
2. Each woman tentatively accepts a proposal from her highest-preference man (if any)
and rejects all others.

Steps t ≥ 2:
1. Each man who has been rejected in the previous step proposes to his next most-
preferred woman.
2. Each woman tentatively accepts her most-preferred proposal (if any) between the
one she holds and any new ones received in the round.

When there are no more rejections, the tentative proposal becomes final.

We note that this process runs for a finite number of steps—since no man can propose to
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the same woman more than once—meaning there are at most (n − 1)2 steps in the algo-

rithm.

We see that the set of marriages found by this algorithm is always stable by contradiction:

Suppose man mi and woman wj are not married to each other, but mi prefers wj to his own

partner. This implies that at some step t, mi proposed to wj, and did so before he proposed

to his actual partner wi. Since wj rejected mi (otherwise he wouldn’t have been matched to

wi), she already had a preferred tentative match and her final match is at least as preferred

as that tentative one, giving a contradiction.

1.3 Key Applications

Matching, along with auction theory, form the backbone ofmarket design, which seeks

to construct solutions that increase the liquidity, efficiency, and equity in exchanges in-

volving multiple parties [7]. Market design is broadly concerned with outcomes in two

sidedmarkets, which involve participants that are drawn from disjoint sets, as in our mar-

riage example from Section 1.1. These markets come in three flavors: one-to-one, where

each participant is matched with at most one person from the opposing party,many-to-

one, which Gale and Shapley [4] explored with college admissions, andmany-to-many,

which we will not explore in this thesis.

Although by itself, Gale and Shapley’s paper presents two seemingly stylized toy models

for symmetric two-sided matching, in the decades since, a vast literature has grown out of

their framework, particularly in the application of similar matching models to real-world

markets. Variants of the deferred acceptance algorithm are critical in a host of diverse ap-
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plications, chief among them allocating people in labor and school markets.

1.3.1 Medical ResidencyMatching

One of the earliest such applications—predating Gale and Shapley’s paper—concerns the

medical residency matching process. In many countries, the first step taken by doctors

after completing medical school is a residency program in their specialization. Like most

labor markets, participants in the matching process have their own, often conflicting, in-

centives: hospitals want to secure the most promising doctors for their programs while

new doctors want to balance waiting for good programs with securing an offer.

Between the early 1900s and 1952, these competing goals led to two market failures. The

first, called unraveling, occurred because hospitals competed against each other to ob-

tain the best residents and thus each sent out offers slightly earlier than the others. This

pressure moved the offer date earlier each year, until, by 1945, it was customary for med-

ical students to be hired for residency almost two years before their graduation date [18].

The second market failure happened in 1945 when the medical schools stepped in to stop

this unraveling by not releasing student information before a given date. Hospitals how-

ever, now realized that if their top choice candidates rejected their offer, their next choices

would often already have accepted offers from other hospitals. In order to secure the best

candidates for themselves, hospitals then started sending exploding offers, which had to be

accepted immediately or rejected in order for a candidate to see other offers [19]. This led

to a chaotic marketplace where doctors often reneged on offers and neither party reached

a satisfactory matching.

These problems were solved in the early 1950s by the medical residency match, now known
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as theNational ResidentMatching Program (NRMP). The NRMP is a centralized clear-

inghouse that consolidates the preference lists of doctors and hospitals. It then runs a

hospital-proposing deferred acceptance algorithm over the orderings to produce a stable

matching [14]. Since then, the NRMP has been further modified in order to overcome

new hurdles, chief among them the desire to keep couples—of which there were many—

near each other.

1.3.2 School Choice

Another problem whose basic form presents itself as a stable matching application is the

assignment of students to schools—something that more closely mirrors the college ad-

missions model of Gale and Shapley [4]. The deferred acceptance algorithm has been

used for specialized high school admissions in New York City schools as well as for general

admissions in Boston public schools [1], the former of which is a two-sided market where

students and schools rank each other while the latter is a one-sided market where schools

do not rank applicants. In these instances, the original matching algorithms employed

through a centralized clearinghouse were not strategy proof, meaning families could ben-

efit by gaming the system by submitting preference lists that weren’t accurate to their true

desires [2]. This resulted in a market failure different from the medical residency match,

where instead of an unraveling or a chaotic marketplace, participants—usually the fam-

ilies with more resources and institutional know-how—could improve their chances of

being placed in a preferred school [15]. In these instances, deferred acceptance algorithms,

which are strategy proof for the proposing side, thus enabled participants to state their

true preferences and reduced the impact of outside factors in school placement.
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1.4 Scope of the Thesis

A key finding of Gale and Shapley’s work was the existence of a stable matching [4]. How-

ever, a market can have multiple possible assignments that all satisfy stability conditions,

each with different properties with regards to the outcomes. In this expository thesis, we

thus study the theory behind determining the number of stable matchings in an instance

of the stable marriage problem. We tackle this problem from the lens of Pittel [11] by ex-

tending the work of Knuth [6] to first compute the expected number of stable matchings

in a symmetric market with n participants on each side and then determine asymptotic

bounds for the number of stable matchings as n → ∞ for preferences chosen uniformly

at random [12]. These results are then used to provide bounds for the expected maximum

and minimum ranks in a stable marriage, which are indicators for the relative ’desirability’

of a matching for the set of men or women as a whole.
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2
Mathematics of Stable Matching

This chapter is an introduction to the formal mathematics of matching theory. We start

with the definitions and theorems that lay the groundwork for the marriage model dis-

cussed in Chapter 1. This is followed by an exploration of stability in the marriage prob-

lem and the class of stable outcomes. Key properties of stable matchings are then proven,
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followed by an introduction to the lattice framework for the set of stable matchings. The

direction for many of the definitions and theorems are adapted from Roth and Sotomayor

[17].

2.1 TheMarriageModel

The players in our game are a part of two finite, disjoint sets M = {m1, . . . ,mn} and W =

{w1, . . . ,wp}, denoted men and women respectively. Together, they form a two-sided mar-

ket, meaning each man has preferences over himself (i.e. remaining unmatched) and the

set of women, and each woman has preferences over herself and the set of men. For a man

mi and women wj,wk we write wj ≻mi wk to denote that mi prefers wj over wk and we write

wj ⪰mi wk to denote that mi prefers wj at least as much as wk.

Formally, we adapt the notation of Roth and Sotomayor [17] as follows: for a man mi ∈

M, his preferences are denoted by an ordered list P(mi) over the set {mi} ∪ W. Consider as

an example the following preference:

P(mi) = wj,wk,mi, . . . ,wl (2.1)

This indicates that wj ≻mi wk. Any woman w such that w ⪰mi mi is called acceptable and

for brevity, we will only write preference lists up to acceptability. The above example then

becomes

P(mi) = wj,wk (2.2)

Finally, it’s possible for a man mi to be indifferent between some set of women {wj,wk} ⊆

W. Indifference between these alternatives is denoted [wj,wk].
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Definition 2.1 (Strict Preferences): If an individual is not indifferent between any alter-

natives, their preferences are said to be strict. Unless stated otherwise, our markets in this

work will involve strict preferences.

The set of all preference lists is denoted P = {P(m1), . . . ,P(mn),P(w1), . . . ,P(wp)}. A mar-

riage market can then be defined completely by the tuple (M,W,P). We will make one

more assumption about the structure of preferences:

Definition 2.2 (Rationality): Individuals are said to be rational if their preferences form

a complete ordering and are transitive.

In this context, a complete ordering means that for any mi, over the set of alternatives

W, any two alternatives can be compared to each other. Transitivity, on the other hand,

means that for alternatives wj,wk,wl ∈ W, if wj ≻mi wk and wk ≻mi wl, then wj ≻mi wl.

Because our market is two-sided, all of these concepts apply symmetrically to women as

well.

The output of a marriage market, such as the one constructed above, is a set of marriages,

called a matching.

Definition 2.3 (Matching): Amatching is a function µ : M ∪ W → M ∪ W such that

µ(m) ∈ W ∪ {m}, µ(w) ∈ M ∪ {w} and u2(m) = m, u2(w) = w.

Intuitively, the first condition means that the market is two-sided and that each person is

either matched with themselves or with someone from the opposing set. The second con-

dition implies that if m is matched to w then w is matched to m, since µ(µ(m)) = µ(w) = m

and vice versa.
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2.2 Stability in theMarriageModel

Going beyond just describing matchings, we will now delve into why some outcomes are

more likely to occur than others in our game. To do so, we first extendDefinition 2.2 to

describe matchings as follows:

Definition 2.4 (Individual Rationality): Amatching µ is said to be individually rational

if all agents i find their partners µ(i) to be acceptable.

This means that there is no individual k in our matching who prefers themselves to their

given match: k ̸≻k µ(k). In addition to a match not being blocked by an individual, to

ensure that there are no “divorces,” we also want there to be no pairs who are incentivized

to go against the outcome.

Definition 2.5 (Blocking Pair): A blocking pair to a matching µ is a pair of agents (m,w)

who prefer each other to their matches under µ, meaning w ≻m µ(m) and m ≻w µ(w).

In this scenario, the pair (m,w) are incentivized to ignore µ and marry each other, meaning

they block the matching.

Definition 2.6 (Stable Matching): Amatching µ is stable if it is individually rational and

contains no blocking pairs.

2.3 Key Properties of StableMarriages

Having established the formal definition of a stable matching, we now refer back to Chap-

ter 1, where we showed that the deferred acceptance algorithm [4] was finite and pro-

duced a stable marriage. There, we noted that the algorithm found a stable matching out
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of many that may be possible for a given setup. We now categorize these types of match-

ings. Let≻M be a partial ordering on the set of stable matches, which represents the com-

mon preferences of all men. Then, µ ≻M µ′ means that all men like µ at least as much as

µ′ and there exists at least one man for which this preference is strict. ≻W is defined analo-

gously for women.

Definition 2.7 (M/W-Optimal Stable Matching): Given a market (M,W,P), a stable

matching µ is Man-optimal (M-optimal) if for all other stable matchings µ′, µ ⪰M µ′.

Similarly, µ is Woman-optimal (W-optimal) if µ ⪰W µ′.

We can now show that the man-proposing deferred acceptance algorithm returns the

M−optimal stable matching (and likewise for the woman-proposing variant). To do so,

we define the notion of a pair (m,w) being achievable for each other if in a market (M,W,P)

there exists some µ such that m = µ(w) and vice versa.

Theorem 2.8 (Gale and Shapley [4]): When all men and women have strict preferences,

the man-proposing deferred acceptance algorithm produces the M-optimal stable match-

ing.

Proof: Assume that up to some step t′ in the deferred acceptance algorithm, no man has

been rejected by an achievable woman. Now, suppose there exists a pair (m,w)where w

rejects m on step t′. We have two cases:

• Case I: w finds m unacceptable, in which case w is unachievable for m, which is fine.

• Case II: w rejects m in favor of m′ who she prefers more. In this case, we know that

m′ prefers w to all women other than those he has already been rejected by up to step
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t′. Let µ be a matching that pairs (m,w) and everyone else to someone achievable.

Then, we know that w ≻m′ µ(m′) and from earlier we know that m′ ≻w m, meaning

(m′,w) form a blocking pair for any such µ, meaning w is always unachievable for m.

Thus, there is no stable matching that pairs m,w, as desired.

From this, we thus see that in the setting of strict preferences, each side of the market

agrees on its own best stable matching—the men prefer µM produced by the man-proposing

DA algorithm and the women prefer µW likewise. These preferences are not only distinct,

but also opposing: the optimal stable matching for men turns out to be the worst stable

matching for women and vice versa.

Theorem 2.9 (Knuth [6]): When all agents have strict preferences, for stable matchings

µ, µ′ we have µ ≻M µ′ if and only if µ′ ≻W µ.

Proof: Let µ, µ′ be stable matchings such that µ ≻M µ′ and assume that µ′ ̸≻W µ. We pro-

ceed by contradiction. This implies that ∃w ∈ W such that µ ≻w µ′. Because w prefers µ

to µ′, she must have different partners in the two matchings. Moreover, individual ratio-

nality implies that she can’t be matched to herself in µ so we can let m = µ(w). Because

µ ≻M µ′, we have that w ≻m µ′(m), meaning that (m,w) form a blocking pair for µ′ and

thus µ′ is not stable, a contradiction.

For a given market (M,W,P) and stable matchings µ, µ′ we further define M(µ),W(µ) to be

the set of men, women who prefer µ to µ′ and similarly M(µ′),W(µ′) to be the set of men,

women who prefer µ′ to µ. Knuth [6] then proved the following about these sets:

Theorem 2.10 (The Decomposition Lemma): For stable matchings µ, µ′ over (M,W,P)
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where all preferences in P are strict, we have that the maps µ, µ′ from M(µ) → W(µ′) and

M(µ′) → W(µ) are surjective.

Proof: Choose m ∈ M(µ), which means µ(m) ≻m µ′(m) and note by definition µ′(m) ⪰m m,

meaning µ(m) ∈ W. Let w = µ(m). Then, by stability of µ′ we must have that µ′(w) ≻w

µ(w) = m. Thus, we have that w ∈ W(µ′) and thus µ(M(µ)) ⊆ W(µ′). By a symmetric

argument, µ′(W(µ′)) ⊆ M(µ). Therefore, because M(µ),W(µ′) are necessarily finite and

µ, µ′ are one-to-one, they must also be surjective.

The decomposition lemma allows us to prove many non-obvious facts about stable match-

ings. In particular, McVitie andWilson [8] showed the following about the set of people

who are single (and thus the set who are partnered) in all stable matchings:

Theorem 2.11 (The Lone Wolf Theorem): For a given market (M,W,P)where the

preferences are strict, the set of people who are single (partnered) is identical over all sta-

ble matchings.

Proof: Wewill show this by contradiciton. Suppose, for stable matches µ, µ′ there exists

m ∈ M such that m has a match under µ′ but not under µ. This means m ∈ M(µ′). Apply-

ing Theorem 2.10, we know that µ : W(µ) → M(µ′) is surjective, meaning m must also be

matched under µ, which is a contradiction.

In our study of matching in two-sided markets, we’ve made the implicit assumption that

the most desirable outcome is a stable one. Looking at the M−optimal stable match, it is

clear by definition that it is preferred to all other stable matches for the men. However, we

haven’t yet shown that the M−optimal stable match is preferred by the men over any un-

stablematch. After all, if such a match existed, it would imply that optimizing for stability
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comes at some cost to the total utility of all men. As always, all concepts apply symmetri-

cally to W−optimal stable matches. One way to compare different stable matchings and

their aggregate utility to the participants is through the notion of Pareto optimality [10].

Definition 2.12 (Pareto Optimality for Men): Consider a market (M,W,P) and a match-

ing µ : m → µ(m) ∈ W. µ is Pareto optimal if there exists no other matching µ′ such that

µ′(m) ≻m µ(m) for some m ∈ M.

This is quite a strong construct: if a situation is Pareto optimal, then the situation can’t

be strictly improved for anyman without harming the outcomes of other men. We can

loosen this definition a bit by looking at the space of matchings that can’t be improved

upon for every individual involved.

Definition 2.13 (Weak Pareto Optimality): Consider a market (M,W,P) and a match-

ing µ : m → µ(m) ∈ W. µ is weak Pareto optimal if there exists no other matching µ′ such

that µ′(m) ≻m µ(m) for all m ∈ M.

Having established these definitions, we will now show a perhaps unintuitive fact: that no

matching, regardless of stability, is preferred by all men to the M−optimal stable match.

Theorem 2.14 (Weak Pareto Optimality for Men): The M−optimal stable match µM

is weak Pareto optimal for the set of men, meaning there exists no matching µ such that

µM ≻m µ for all m ∈ M.

Proof: Wewill show this by contradiction. Let µ be such a matching and note that by defi-

nition of µ, ∀m ∈ M, µ(m) = w ∈ W such that µM(w) = m′ ̸= m, meaning µmatches every

man to an acceptable woman who rejected him under µM. Thus, everyone matched under
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µ is also matched under µM, meaning µM(µ(M)) = M. This implies µM(M) = µ(M).

Now consider the man-proposing deferred acceptance algorithm used to generate µM.

Note that µM matches all men in M and the algorithm halts as soon as every woman in

µM(M) has an acceptable proposal. Consider a woman w ∈ W who gets a proposal in the

final proposing step of the algorithm. She hasn’t rejected any acceptable men yet by con-

struction. However, because we assumed that µ ≻m µM for all m ∈ M, we must have that

this woman is unmatched in µM. This contradicts the fact that µM(M) = µ(M).

2.4 The Lattice Structure of Stable Outcomes

Working in the framework of strict preferences, for arbitrary matchings µ, µ′ define the

following functions on the set M ∪ W:

λ(m) = µ ∨M µ′ =


µ(m) if µ(m) ≻m µ′(m)

µ′(m) else
(2.3)

λ(w) = µ ∨M µ′ =


µ(w) if µ′(w) ≻w µ(w)

µ′(w) else
(2.4)

The functions ν(m) = µ ∧M µ′ and ν(w) = µ ∧M µ′ are defined analogously, with the

preferences reversed. λ is thus the function that assigns each man his more preferred part-

ner between µ, µ′ and each woman her less preferred partner while ν is the function that

assigns each man his less preferred partner and each woman her more preferred one.

While these are interesting constructions, it’s not immediately clear whether λ, ν are them-
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selves matchings. We could have that for m ̸= m′ ∈ M, λ(m) = λ(m′), meaning the same

woman is the most preferred for two different men. Additionally, it may be that λ(m) = w

but λ(w) ̸= m for some pair (m,w), meaning the outputs of the function aren’t opposing

for men and women. None of these turn out to be the case, however, as shown by John

Conway in [6].

Theorem 2.15 (Lattice Theorem): Under strict preferences, given stable matchings µ, µ′

the functions λ = µ ∨M µ′ and ν = µ ∧M µ′ are also stable matchings.

Proof: We show this for λ and note that a symmetric argument applies to ν. First, to prove

that λ is a matching at all, we must show that λ(m) = w ⇐⇒ λ(w) = m. The direction

λ(m) = w =⇒ λ(w) = m follows from stability of µ, µ′.

For the other direction, construct the sets M∗ = {m ∈ M|λ(m) ∈ W} and W∗ = {w ∈

W|λ(w) ∈ M}. By the definition of λ, M∗ = {m ∈ M|µ(m) or µ′(m) ∈ W} and W∗ = {w ∈

W|µ(w) or µ′(w) ∈ M}. Now, we utilize the other direction, which tells us that λ(M∗) ⊆

W∗. Now, note that |λ(M∗)| = |M∗| since λ(m) = λ(m∗) = w if m = m∗ = λ(w). λ(M∗) is at

least as large as µ(W∗), which is the same size as W∗, meaning λ(M∗) and W∗ are of the same

size and λ(M∗) = W∗. We conclude by considering the following two cases:

• Case I: If w ∈ W∗ then for some m ∈ M, λ(w) = m and thus λ(m) = w.

• Case II: If w ̸∈ W∗ then λ(w) = w. Thus, if λ(w) = m then λ(m) = w.

Finally, we show that λ is stable by contradiction. Suppose there exists a blocking pair

(m,w) for λ. This implies w ≻m λ(m), meaning w ≻m µ(m) and w ≻m µ′(m). We also

have m ≻w λ(w), meaning we must either have that λ(w) = µ(w) or λ(w) = µ′(w). In either

17



case, this contradicts the stability of µ, µ′.

We can use Conway’s result to study the macro structure of the set of stable matchings.

Definition 2.16 (Lattice): A lattice is any set L with a partial ordering⪰ for which all

pairs of elements a, b ∈ L have a supremum a ∨ b ∈ L and infimum a ∧ b ∈ L.

Definition 2.17 (Distributive Lattice): A lattice L is distributive if all of its elements

satisfy the distributive property: for any a, b, c ∈ L we have

a ∨ (b ∨ c) = (a ∨ b) ∨ c

a ∧ (b ∧ c) = (a ∧ b) ∧ c

Theorem 2.17: The set of all stable matchings is a distributive lattice.

Proof: Let µ, µ′, µ′′ be three arbitrary stable matchings. First, note by our definitions of

∨,∧ that both functions are symmetric about their inputs, meaning they are commuta-

tive. From Theorem 2.15, we note that applying ∨ or ∧ to any pair also results in a stable

matching. The distributive property then follows.
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3
The Number of Stable Matchings

Our analysis thus far has revolved around specific, special stable matchings in the two-

sided marriage market. In this chapter, we zoom out in scope, building on the theory in-

troduced in Chapter 2 to explore the expected number of stable matchings in a size n sta-

ble marriage problem with strict preferences chosen uniformly and at random. This work
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expands and adds more detail to the theorems of Pittel [11], particularly as it pertains to

random partitions of the unit interval.

3.1 A Loose Lower Bound

Given a particular market (M,W,P), one way to understand the space of stable match-

ings is to algorithmically find each and every one. As we’ll see, however, the number of

stable matchings can grow exponentially in the size of the market, making this infeasi-

ble in many scenarios. We thus start by providing a lower bound on the number of stable

matchings.

Specifically, for a market of size n = |M| = |W|, denote by f(n) the number of stable match-

ings and assume that all preference lists have self-matches as the least desired outcome. We

start by showing that f(n) indeed grows exponentially in n.

Theorem 3.1: Given two marriage markets (M,W,P) and (M∗,W∗,P∗) of size a, b with

x, y stable matchings respectively, there exists a market of size ab with at leastmax(xya, yxb)

stable matchings.

Proof: Label the set of men and women in the two markets by (mi,wi), (m∗
i ,w∗

i ). We now

construct a market of size ab as follows:

• Each man is denoted by the tuple (mi,m∗
j ) and each woman by the tuple (wi,w∗

j )

where i ∈ [1, a], j ∈ [1, b].

• (wk,w∗
l ) ≻(mi,m∗

j )
(wk∗ ,w∗

l∗) if w∗
l ≻m∗

j
w∗

l∗ or if l = l∗ and wk ≻mi wk∗ .

• (mk,m∗
l ) ≻(wi,w∗

j )
(mk∗ ,m∗

l∗) if m∗
l ≻w∗

j
m∗

l∗ or if l = l∗ and mk ≻wi mk∗ .
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Now, let µ1, . . . , µb be any set of stable matchings for market (M,W,P) and µ be any stable

matching for market (M∗,W∗,P∗). We will show that the following map is a stable match-

ing: γj : (mi,m∗
j ) → (µj(mi), µ(m∗

j )).

First, note that γi is a matching, since both µ, µi are, and thus the properties of Definition

2.3 are satisfied. We now proceed by contradiction. Assume that γi is blocked by a pair

((m,m∗), (w,w∗)). We then have four possibilities for preferences between the alternatives:

• Case I: w∗ ≻m∗ µ(m∗) and m∗ ≻w∗ µ(w∗). This scenario is impossible because it

violates stability of µ.

• Case II: w∗ ≻m∗ µ(m∗) and m∗ = µ(w∗),m ≻w µj(m). Conditions are incompatible.

• Case III: m∗ ≻w∗ µ(w∗) and w∗ = µ(m∗),w ≻m µj(w). This scenario is impossible

because it violates stability of µj.

• Case IV: m∗ ≻w∗ µ(w∗) and w∗ ≻m∗ µ(w∗). Conditions are incompatible.

Thus, the map γi is stable and there are yxb such stable matchings. A symmetric argument

shows the corresponding result for xya.

Having established the exponential growth of f(n), we now show a lower bound on the

number of stable matches.

Theorem 3.2: For k ∈ Z+, there exists a marriage market (M,W,P) of size |M| = |W| =

n = 2k with at least 2n−1 stable matchings.

Proof: We proceed by induction.

• Base Case: When n = 20, the market has 1 participant on either side, thus admitting
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the trivial stable marriage. For n = 21, the deferred acceptance algorithm provides

one stable marriage.

• Inductive Hypothesis: Assume the theorem holds for n = 2k.

• Let the stable matching from the hypothesis have size b = n with y = 22k−1 and

construct a stable matching of size a = 2 with x = 2 stable matches as follows:

w1 ≻m1 w2,w2 ≻m2 w1 (3.1)

m2 ≻w1 m1,m1 ≻w2 m2 (3.2)

We can now applyTheorem 3.1, which tells us that there exists a marriage market

of size 2 · 22k
= 2k+1 with at least

max

(
2 ·
(

22k−1
)2

, 22k · 22k−1
)

= 22k+1−1 (3.3)

stable matchings, as desired.

3.2 Probability aMatching is Stable

In order to improve on our results from the previous section and provide a tighter asymp-

totic bound on the expected number of stable matchings, we first derive expressions for

the probability of a given match being stable, providing a formal proof for the claims

made by Knuth [6].

We work in the space of marriage markets (M,W,P) of size n, meaning |M| = |W| = n

where all preference lists are strictly ordered and contain every member of the opposing
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set—meaning being single is the least-preferred outcome for each participant. Each per-

son has n! distinct choices for their preference list, meaning there are a total of (n!)2n possi-

ble configurations for such a market.

Let every participant choose their preference lists at random and note that by symmetry,

each possible matching has the same probability Pn of being stable. Construct the n × n

square matrix X = [xij]with diagonal elements xii = 0 ∀i ∈ [n] and with xij = 0 or 1 ∀i ̸=

j ∈ [n]. Note that there are 2n(n−1) such matrices. In addition, define the row and column

sums of X as ri =
∑

j xij and cj =
∑

i xij.

Theorem 3.3 (Knuth [6]): The probability of a randommatching µ being stable is

Pn =
∑
[xij]

∏
1≤j≤n

(−1)rj

(1 + rj)(1 + cj)
(3.4)

Proof: For any given matrix X, define BX to be the event that the man-woman pair (i, j)

corresponding to entries where xij = 1 blocks µ. Thus, if X = 0, then there are no blocking

pairs and we have rj = cj = 0 ∀j, meaning the above formula is valid, since the match is

stable:

Pn =
∑
[xij]

∏
1≤j≤n

(−1)0

(1 + 0)(1 + 0) =
∑
[xij]

∏
1≤j≤n

1 = 1 (3.5)

We now proceed to calculate Pn using inclusion-exclusion, subtracting the number of

matches that are blocked. To calculate the number of matches that are blocked by a given

event BX, note that for a given row i ∈ [n] there are ri women that block µ, meaning each of

these women must be before wi on the preference list of mi and for a given column j ∈ [n]

there are cj men that block µ, meaning each of these men must be before mj on the prefer-
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ence list of wj.

For each j ∈ [n]we thus have that the number of blocked stable marriage instances is

(n!)2

(1 + rj)(1 + cj)
(3.6)

Taking the product over all rows, the total number of blocked marriages due to BX is

∏
1≤j≤n

(n!)2

(1 + rj)(1 + cj)
= (n!)2n

∏
1≤j≤n

1
(1 + rj)(1 + cj)

(3.7)

Since there are (n!)2n possible market configurations, we have

P(BX) =
∏

1≤j≤n

1
(1 + rj)(1 + cj)

(3.8)

The number of nonzero entries in a given matrix X is equal to the sum over all rows of rj.

Our desired probability is then, by inclusion-exclusion,

Pn = 1 +
∑
X̸=0

(−1)rjP(BX) (3.9)

Combining with equation 3.5 we have our desired probability

Pn =
∑
[xij]

∏
1≤j≤n

(−1)rj

(1 + rj)(1 + cj)
(3.10)

We can now use this to derive the following integral formula for the probability of a stable
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match:

Theorem 3.4 (Knuth [6]): The expression fromTheorem 3.3 is equivalent to

Pn =

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

∏
1≤i ̸=j≤n

(1 − xiyj)dx1 . . . dxndy1 . . . dyn where xi, yj ∈ [0, 1] (3.11)

Proof: We can rewrite the above product as

∏
1≤i̸=j≤n

(1 − xiyj) =
∑
[xij]

∏
1≤i,j≤n

(−xiyj)
[xij] (3.12)

=
∑
[xij]

∏
1≤j≤n

(−xj)
rjycj

j (3.13)

We can now take 2n integrals of the sum over [0, 1], which gives our desired alternating

sum from equation 3.10.

3.3 Core Theorems

Before utilizing our work from the previous section to formulate a tighter bound on the

number of stable matchings, we first explore foundational definitions and prove well-

known bounds on random variables which will be useful in the constructions to come.
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3.3.1 Random Variables Over the Unit Interval

Let U1, . . . ,Un be independent, identically distributed U[0, 1] random variables and define

the functions:

Sn =
n∑

j=1
Uj Tn =

∑n
j=1 U2

j

S2
n

(3.14)

In addition, we construct a random partition of [0, 1] as follows: select the n − 1 random

points over [0, 1] as the values of the random variables U1, . . . ,Un−1. Consider the order

statistics over this distribution, which gives us a reordering U(1), . . . ,U(n−1) where U(i) ≤

U(i+1). We can now partition the unit interval into disjoint sub-intervals

L1 = [0,U(1)), L2 = [U(1),U(2)), . . . , Ln = [U(n−1), 1] (3.15)

Note that∑n
i Li = 1, meaning L1, . . . , Ln−1 jointly determine Ln, and define the quantities

Vn =
n∑

j=1
L2

j Mn = max
1≤j≤n

Lj (3.16)

Theorem 3.5: The joint density of (L1, . . . , Ln−1) equals (n − 1)!whenever it is not 0.

Proof: Note that the sample space corresponding to (U1, . . . ,Un−1) is [0, 1]n−1 and let our

measure over the hypercube be the Lebesgue measure. We can then define Γ := {0 ≤ u1 ≤

· · · ≤ un−1 ≤ 1} as the subset of the hypercube corresponding to (U(1) ≤ · · · ≤ U(n−1)).

There are (n − 1)! permutations ω of [1, n − 1] and thus [0, 1]n−1 contains (n − 1)! such
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regions Γω := {0 ≤ uω(1) ≤ · · · ≤ uω(n−1) ≤ 1}. Let M ⊆ Γ be a measurable subset with

corresponding Mω ⊆ Γω. We then have:

P((U(1) ≤ · · · ≤ U(n−1)) ∈ M) = P((U1, . . . ,Un−1) ∈ ∪ωMω) (3.17)

=
∑
ω

P((U1, . . . ,Un−1) ∈ Mω) (3.18)

= (n − 1)!P((U1, . . . ,Un−1) ∈ M) (3.19)

Where the final equality comes from the fact that each Ui is a U[0, 1] random variable. We

thus see that the measure of (U(1) ≤ · · · ≤ U(n−1)) is (n − 1)! over every measurable subset of

Γ and 0 otherwise.

To translate this result into one over (L1, . . . , Ln−1), let U(0) := 0 and define

Li := U(i) − U(i−1) Ln := 1 −
n−1∑
i=1

Li (3.20)

The transformation α : (U(1) ≤ · · · ≤ U(n−1)) → (L1, . . . , Ln−1) has a Jacobian matrix whose

determinant has absolute value one, so we have that αmaps

Γ → Ω = {(ℓ1, . . . , ℓn−1) ≥ 0⃗ :
∑

i
ℓi ≤ 1} (3.21)

Thus, (L1, . . . , Ln−1) has density (n − 1)! over all (ℓ1, . . . , ℓn−1) ∈ Ω and zero otherwise.
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3.3.2 Functions of Subintervals Over [0,1]

We now prove three lemmas on the likely asymptotic behavior of functions of these subin-

tervals that will be critical in the main bound of Pittel [11].

Lemma 3.6: For Mn as defined above and ϵ > 0

lim
n→∞

Pn := P
(

Mn ≥ (1 + ϵ) ln(n)
n

)
= 0 (3.22)

Proof: Because we showed above that the density of (L1, . . . , Ln−1) is uniform over Ω, note

that P(L1 ≥ x) = P(Li ≥ x), meaning we can union bound:

Pn ≤ nP
(

L1 ≥
(1 + ϵ) ln(n)

n

)
(3.23)

However, the right hand side of our expression is equivalent to

nP
(

L1 ≥
(1 + ϵ) ln(n)

n

)
= nP

(
U(1) = min

1≤i≤n
U(i) ≥

(1 + ϵ) ln(n)
n

)
(3.24)

= n
(

1 − (1 + ϵ) ln(n)
n

)n
(3.25)

The limit of which goes to 0 as n → ∞, as desired.

Consider two distinct partitions of the unit interval [0, 1], which we will denote L⃗ = (L1, . . . , Ln)

and K⃗ = (K1, . . . ,Km). For m = n + o(n), the following limit holds:

Lemma 3.7: limm→∞

(
m
∑

i∈[m] LiKi

)
= 1.

Proof: For random variables Xi,Yj which are independent and exponentially distributed
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with parameter 1, the distribution (L1, . . . , Lm−1) is equivalent to the distribution

(
X1∑

i∈[m] Xi
, . . . ,

Xm−1∑
i∈[m] Xi

)
(3.26)

And the distribution (K1, . . . ,Kn−1) is equivalent to

(
Y1∑

j∈[n] Yj
, . . . ,

Yn−1∑
j∈[n] Yj

)
(3.27)

We can thus write our expression as

m
∑
i∈[m]

LiKi =
1
m
∑

i∈[m] XiYi
1
m
∑

i∈[m] Xi · 1
n
∑

j∈[n] Yj

(m
n
)

(3.28)

We can now use the weak law of large numbers, which tells us that the following expres-

sions converge in probability:

1
m
∑
i∈[m]

XiYi → 1 1
m
∑
i∈[m]

Xi → 1 1
n
∑
j∈[n]

Yj → 1 (3.29)

We combine these with the observation that because m = n+o(n), limn→∞
m
n = 1 to get our

desired limit.

Lemma 3.8: Using the definitions at the beginning of Section 3.3.1, we have

lim
m→∞

mVm = 2 (3.30)
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Proof: We use the same definiton of Xi as in Lemma 3.7 and simplify the expression

mVm =
m
∑m

i=1 X2
i

(
∑m

i=1 Xi)2 =
m−1∑m

i=1 X2
i

(m−1∑m
i=1 Xi)2 → E[X2

i ]

E[Xi]2
= 2 (3.31)

Where the final equality comes from the expectation and variance of the exponential dis-

tribution.

We can now use the above lemmas in proving the following bound, which will be crucial

to our eventual result:

Theorem 3.9: Let Sk be the sum of k U[0, 1] random variables as described above and

fSk(s) the density of Sk. Then,

fSk(s) =
sk−1

(k − 1)!P(Mk ≤ s−1) ≤ sk−1

(k − 1)! (3.32)

Proof: For 0 < s1 < s2 < n we can write the probability of the event Sk ∈ [s1, s2] as an

integral over a subset of [0, 1]n as

P(s1 ≤ Sk ≤ s2) =

∫
· · ·
∫

︸ ︷︷ ︸
sk∈[s1,s2]

du1 . . . duk (3.33)

Where ui ∈ [0, 1] and sk =
∑k

i ui. We now transform into new variables by the map

α : (u1, . . . , uk) → (s, ℓ1, . . . , ℓk−1)where ℓi =
ui
s (3.34)

Defining ℓk = 1 −
∑k−1

i ℓi, we have the inverse transformation α−1 : ui → sℓi with Jacobian
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sk−1. We can now write the probability as

P(s1 ≤ Sk ≤ s2) =

∫
· · ·
∫

sk−1dsdℓ1 . . . dℓk−1 (3.35)

=

∫ s2

s1

sk−1

(k − 1)!

∫
· · ·
∫

︸ ︷︷ ︸
ℓi≤s−1

(k − 1)!dℓ1 . . . dℓk−1 (3.36)

Letting Li once again be defined as the ith subinterval in a random partition of [0, 1] by

choosing k − 1 points from U[0, 1], we use our proof of the fact that (L1, . . . , Lk−1) has joint

density (k − 1)! to simplify

=

∫ s2

s1

sk−1

(k − 1)!P(Mk ≤ s−1)ds (3.37)

This proves our definition of the joint density fSk(s) by definition. Noting that P(Mk ≤

s−1) ∈ [0, 1] and the equality holds for all s1 < s2 also tells us that the expression is upper

bounded by sk−1

(k−1)! as desired.

For a further bound, recall from our proof above that the Jacobian of α−1 is sk−1. Letting

IA be the indicator random variable for event A occurring, we can write the joint density

function for (Sk,Ui/Sk) as

f(s, ℓ1, . . . , ℓk−1) = sk−1IMk<s−1I∑i ℓi≤1 (3.38)

The joint density of (L1, . . . , Lk−1) can be written

g(ℓ1, . . . , ℓk−1) = (k − 1)!I∑i ℓi≤1 (3.39)
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Combining the equations, we rewrite the joint density of (Sk,Ui/Sk) as

f(s, ℓ1, . . . , ℓk−1) =
sk−1

(k − 1)!g(ℓ1, . . . , ℓk−1)IMk<s−1 (3.40)

≤ sk−1

(k − 1)!g(ℓ1, . . . , ℓk−1) (3.41)

Where the inequality comes from the fact that IMk<s−1 has a maximum of 1.

We can now replace (Sk,Ui/Sk)with (Sk,Tk) and Sk with Uk, letting f(s, t) be the joint den-

sity of (Sk,Tk) and g(t) the density of Uk to get the analogous bound

f(s, t) ≤ sk−1

(k − 1)!g(t) (3.42)

3.4 ExpectedNumber of StableMatchings for Large n

Using Knuth’s integral formulation for the probability of a matching being stable, we

now provide an asymptotic analysis of the number of stable matchings one would expect

as the size of the market, n, gets large. Specifically, we will show the following behavior,

which greatly tightens the naïve 2n−1 bound we established inTheorem 3.2:

Theorem 3.10 (Pittel [11]): The expected number of stable matchings as n → ∞ is

asymptotic to n ln(n)
e .

We showed earlier in this chapter that there are n! possible matchings, meaning the expec-

tation we want to bound is n!Pn. This section thus proves the following theorem, which

immediately implies the above:

32



Theorem 3.11 (Pittel [11]): As n → ∞, the probability of a matching being stable is

Pn = (1 + o(1))n ln(n)
n!e (3.43)

Recall that we are studying average behavior over all preference lists where each person

ranks members of the opposing set independently and uniformly at random. We simulate

such a random preference ordering for a symmetric size-n market with M = (m1, . . . ,mn)

men and W = (w1, . . . ,wn)women as follows: consider two n × n matrices of indepen-

dent, identically distributed U[0, 1] random variables X = [Xij] and Y = [Yij]. A given row

in X then represents the preference list of man mi as follows: if Xij1 < Xij2 < · · · < Xijn

then wjn ≻mi · · · ≻mi wj1 . This is analogous for a given row i of Y and the preference of

woman wi. Note that ∀i, j ∈ [1, n] the random variables Xij,Yij are continuous and thus the

probability of a tie in any given row or column is zero. Each of the 2n permutations for

rows/columns in X,Y are independent of each other, meaning the probability of generat-

ing a given instance of the stable marriage problem is 1
(n!)2n . Because the probability of any

specific matching is equal to any others by this construction, we will focus on finding the

probability that the matching µ = {(mi,wi)}i∈[1,n] is stable.

ByTheorem 3.4, we know that the probability of µ being stable is

Pn := P(µ is stable) =
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

∏
1≤i ̸=j≤n

(1 − xiyj)dx1 . . . dxndy1 . . . dyn (3.44)

Where xi = Xii, yj = Yjj. We start with an upper bound for Pn by utilizing the fact that for
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all α ≥ 0 we have 1 − α ≤ e−α−α2/2. Applying this to our integrand of Pn, we get

Pn =

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n

n∏
j=1

(∫ 1

0
e−ysj−

y2tj
2 dy

)
dx1 . . . dxn (3.45)

Where we define sj :=
∑

i̸=j xi and tj :=
∑

i ̸=j x2
i . From our theorem statement, note that

any factors whose contribution to Pn is o(ln(n)/(n − 1)!) are negligible and can thus be

discarded. We will therefore break up our integral in 3.45 into two parts: one where s :=∑n
i=1 xi ≤ ln(n) and another where s > ln(n).

We bound the integral when s ≤ ln(n) by first removing terms of the form e−y2tj/2, which

are all at most 1.

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s≤ln(n)

n∏
j=1

(∫ 1

0
e−ysj−

y2tj
2 dy

)
dx1 . . . dxn ≤

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s≤ln(n)

n∏
j=1

(∫ 1

0
e−ysjdy

)
dx1 . . . dxn (3.46)

Integrating, we have

≤
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s≤ln(n)

n∏
j=1

(
1 − e−sj

sj

)
dx1 . . . dxn (3.47)

To further bound this expression, note that for z > 0,

d
dz ln

(
1 − e−z

z

)
=

−1
z

(
1 − z

ez − 1

)
(3.48)
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This tells us that

lim
z→∞

d
dz ln

(
1 − e−z

z

)
=

−1
z (1 + o(1)) (3.49)

And also that there exists a constant k > 0 such that

d
dz ln

(
1 − e−z

z

)
∈ [−k, 0] (3.50)

We now use 3.50 with our integrand from 3.47 to see that

ln

(
1 − e−sj

sj

)
= ln

(
1 − e−s

s

)
−
∫ xj

s−xj

d
dz ln

(
1 − e−z

z

)
dz (3.51)

≤ ln

(
1 − e−s

s

)
+ kxj (3.52)

Taking the sum over all j ∈ [1, n]we have the bound

n∑
j=1

ln

(
1 − e−sj

sj

)
≤ n ln

(
1 − e−s

s

)
+ k

n∑
j=1

xj (3.53)

Converting the sum of natural logarithms into their product and exponentiating both

sides of the inequality, this expression becomes

n∑
j=1

ln

(
1 − e−sj

sj

)
= ln

( n∏
j=1

1 − e−sj

sj

)
−→

n∏
j=1

1 − e−sj

sj
≤
(

1 − e−s

s

)n
· ek

∑n
j=1 xj (3.54)

Here, note that in this first integral we are bounding when s =
∑n

j=1 xj ≤ ln(n), meaning
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we can plug this into 3.47 to further bound our original expression as

≤ nk
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s≤ln(n)

(
1 − e−s

s

)n
dx1 . . . dxn (3.55)

We can now pull inTheorem 3.9, since the integral above is the expectation of
(

1−e−Sn
Sn

)n

over the event Sn ≤ ln(n), to get that

≤
∫ ln(n)

0

(
1 − e−s

s

)n sn−1

(n − 1)!ds (3.56)

=
1

(n − 1)!

∫ ln(n)

0

(1 − e−s)n

s ds (3.57)

= o
(

ln(n)
(n − 1)!

)
(3.58)

With this, we’ve established a sufficient bound on the integral from 3.45 when s ≤ ln(n),

meaning we can turn our attention to the analysis for s > ln(n):

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s>ln(n)

n∏
j=1

(∫ 1

0
e−ysj−

y2tj
2 dy

)
dx1 . . . dxn (3.59)

To start, we first bound a general form of the integral inside product above, using the no-

tation t :=
∑n

i=1 x2
i and H(u) :=

∫∞
0 ze−z−z2u/2dz as follows:

∫ 1

0
e−ysj−

y2tj
2 dy ≤ 1

sj

∫ ∞

0
e
−z− z2tj

2s2j dz (3.60)
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≤ 1
sj

∫ ∞

0
e−z− z2tj

2s2 dz (3.61)

=
1
sj

(
1 − tj

s2

∫ ∞

0
ze

−z− z2tj
2s2j dz

)
(3.62)

≤ 1
sj

(
1 − tj

s2 H(t/s2)
)

(3.63)

≤ 1
sj

e−
tj
s2 H(t/s2) (3.64)

Further separating the terms in the product, we first use the fact that∑n
j=1 tj = (n − 1)t to

get

n∏
j=1

e−
tj
s2 H(t/s2) =

n∏
j=1

e−
(n−1)t

s2 H(t/s2) (3.65)

Moreover, we have that

n∏
j=1

1
sj
=

1
sn

n∏
j=1

(
1 − xj

s
)

(3.66)

=
1
sn

n∏
j=1

e
xj
s +O(x2

j /s2) (3.67)

=
1
sn e1+O(1/ ln(n)) (3.68)

Where the last equality is because we are working in the domain where s > ln(n). Com-

bining these to bound the integrand in 3.59 we have,

≤ e1+O(1/ ln(n))
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n, for s>ln(n)

1
sn e(n−1) t

s2 H(t/s2)dx1 . . . dxn (3.69)
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Once again, we’ve turned our bound into one involving the expectations of functions on

U[0, 1] random variables, meaning we can pull inTheorem 3.9 as expressed in 3.42:

≤ e1+O(1/ ln(n))

(n − 1)!

(∫ n

ln(n)

1
sds
)
E
[
e(n−1)VnH(Vn)

]
(3.70)

With Vn as in 3.16. Finally, we use Lemma 3.8 along with the dominated convergence

theorem on our expectation term, which gives the limit in probability

lim
n→∞

E
[
e(n−1)VnH(Vn)

]
=

1
e2 (3.71)

Our integral for s > ln(n) is thus bounded

≤ (1 + o(1))n ln(n)
n!e (3.72)

Combining with our bound on s ≤ ln(n) from 3.56 we thus get our desired upper bound

Pn ≤ (1 + o(1))n ln(n)
n!e (3.73)

What’s left is to now bound Pn from below, which will give us our final equality. Choose

ϵ ∈ (0, 1) and denote by D(ϵ) ⊆ [0, 1]n the subset with x = (x1, . . . , xn) such that

3 ln(n) ≤ s ≤ n
ln2(n)

(3.74)

xj
s ≤ (1 + ϵ)

ln(n)
n (3.75)

t
s2 ≤ (1 + ϵ)

2
n (3.76)
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Combining the first two of these inequalities, we have that

xj ≤
1 + ϵ

ln(n) < 1 (3.77)

We now note that defining Pn(ϵ) as the part of Pn contributed by the region D(ϵ), we have

by definition Pn ≥ Pn(ϵ). As an integral analogous to 3.44, this is

Pn(ϵ) :=

∫
x∈D(ϵ)

n∏
j=1

∫ 1

0

∏
i ̸=j

(1 − xiyj)dyj

 dx1 . . . xn ≤ Pn (3.78)

We start with the innermost product, which we can bound by combining 3.77 with the

fact that limx→0 1 − x = e−x− x2
2 +O(x2) to get, for γn = c

ln(n) with c > 0, that

∏
i̸=j

(1 − xiyj) ≥ e−yjsj−y2
j tj

1+γn
2 (3.79)

For each j ∈ [1, n]we can now bound the whole inner integral as

∫ 1

0

∏
i̸=j

(1 − xiyj)dyj ≥
∫ 1

0
e−ysj−y2tj

1+γn
2 dy (3.80)

Letting z = ysj and using Jensen’s inequality, we have

=
1
sj

∫ 1

0
e−ze

−z2 tj
s2j

1+γn
2 dz (3.81)

≥ 1 − e−sj

sj
e
−

tj
s2j

1+γn
2(1−e−sj )

∫ sj
0 z2e−zdz

(3.82)
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Using 3.77, which was a direct result of our definition of D(ϵ), we have

sj = s − xj (3.83)

= se−
xj
s +O(x2

j /s2) (3.84)

= se−
xj
s +o(xj/s) (3.85)

≥ c ln(n) ∀c ∈ (2, 3) (3.86)

Uniformly over all x ∈ D(ϵ) for large n. This tells us that

1 − esj = 1 + O(n−c) (3.87)

∫ sj

0
z2e−zdz = 2 − 2e−sj

(
1 + sj +

s2
j
2

)
(3.88)

= 2 + O(n−c′) for c′ = c − 2 (3.89)

Combining this with our bound from 3.82, we get

≥ 1 + O(n−c′)

s e
xj
s +o(xj/s)e

−
tj
s2j
(1+O(n/ ln(n)))

(3.90)

Using the fact that sj ≤ s and∑n
j=1 tj = (n − 1)t, we bound the full outer integrand in 3.78

uniformly over all x ∈ D(ϵ) as

n∏
j=1

∫ 1

0

∏
i̸=j

(1 − xiyj)dyj

 ≥ es−ne
−n tj

s2j
(1+O(n/ ln(n)))

(3.91)
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We now consider the following change of variables

α : (x1, . . . , xn) → (s, ℓ1, . . . , ℓn−1) (3.92)

Where ℓi =
xi
s , ℓn = xn

s , and by construction
∑n

i=1 ℓi = 1 We’ve actually seen this transforma-

tion before in 3.34, where we noted that the Jacobian of the inverse transformation is sn−1.

With this transformation, our equations for defining D(ϵ) from 3.74 become

3 ln(n) ≤ s ≤ n
ln2(n)

(3.93)

ℓj ≤ (1 + ϵ)
ln(n)

n (3.94)
n∑

j=1
ℓ2

j ≤ (1 + ϵ)
2
n (3.95)

Letting D(ϵ)ℓ be the region in [0, 1]n defined by 3.94 and 3.95, we see that D(ϵ) can now be

thought of as the direct product of the region defined by 3.93 with D(ϵ)ℓ. Using this fact

along with our bound from 3.91, we can write our full integral for Pn(ϵ) from 3.78 as

Pn(ϵ) ≥
e

(n − 1)!

(∫ n/ ln2(n)

3 ln(n)

1
sds
)(∫

D(ϵ)ℓ

(n − 1)!e−n(1+O(n/ ln(n)))
∑n

j=1 ℓ
2
j dℓ1 . . . dℓn−1

)
(3.96)

Looking at the first integral term, we can see that it is asymptotically equal to ln(n). Focus-

ing on the second term, 3.95 tells us that the integrand over D(ϵ)ℓ is at least

(n − 1)!e−2(1+ϵ)(1+O(1/ ln(n))) (3.97)

Finally, usingTheorem 3.5, where we showed that (n − 1)! is the joint density of the first
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(n − 1) subintervals Li over [0, 1], we can write

Pn(ϵ) ≥
e

(n − 1)! · ln(n) · e−2 · P(Ln) =
n ln(n)

n!e (3.98)

Where Ln is the event thatmaxj∈[n] Li ≤ (1 + ϵ) ln(n)n where∑n
j=1 L2

j ≤ (1 + ϵ)2
n . We can use

Lemma 3.6 here, which tells us that

lim
n→∞

P
(
max
j∈[n]

Li ≥
(1 + ϵ) ln(n)

n

)
= 0 (3.99)

Combined with Lemma 3.8, we have that

lim
n→∞

P(Ln) = 1 (3.100)

Therefore, as n → ∞ and ϵ → 0 we get our desired lower bound

Pn ≥ Pn(ϵ) ≥
n ln(n)

n!e (3.101)

Which concludes our proof of Theorem 3.11.
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4
Probable Ranks in a Stable Matching

Our work in Chapter 3 revolved around characterizing the space of possible stable match-

ings, with a focus on finding the expected number of such outcomes in a size n marriage

market. This chapter builds upon those results in an orthogonal direction—describing a

measure of how desirable a particular matching is for both sides of the market. By study-
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ing the asymptotic behavior of the minimum and maximum total ranks from Pittel [11]

and [12], we show that the side of the market which proposes in our deferred acceptance

algorithm [4] obtains a significantly more favorable outcome as a group.

4.1 The Rank of aMatching

Recall our general marriage market formulation, which has size n sets of men M and women

W, each element of which has a complete preference list over the other set. Consider the

preferences of man mi ∈ M, which are some permutation π over the set of women

P(mi) = wπ(1), . . . ,wπ(n) (4.1)

Then, if a given matching µ assigns µ(mi) = wπ(k), his kth choice, then we say that the rank

of the matching for mi is k. The rank of the overall matching for men, Q(µ), can then be

computed as the sum of the ranks for each individual. The same definition applies to the

woman side of the market as well. Thus, we see that there exists a trivial lower and upper

bound on the rank of a matching: n, n2 respectively. The former occurs when every man

is matched to his top choice woman, giving an overall rank of n × 1 while the latter occurs

when every man is matched to his last choice woman, giving rank n × n. In the rest of this

chapter, we will tighten both of these bounds and better characterize the expected mini-

mum and maximum total ranks for a stable marriage.
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4.2 Probability of a StableMarriage of Given Rank

To start, however, we once again return toTheorem 3.4, which was crucial in our Chap-

ter 3 bounds. Instead of simply determining the probability of a randommatching being

stable, however, we will go further and find an analogous expression for the probability

of a randommatching being stable and having a specific rank. Letting Pnk for k ∈ [n, n2]

be the probability that a randommatching in a size n market has rank k and is stable, we

prove:

Theorem 4.1 (Pittel [12]): For x, y, z ∈ [0, 1] and i, j ∈ [1, n] ∈ Z

Pnk =

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

[
zk−n] ∏

1≤i ̸=j≤n
(1 − xi(1 − z + zyj))dx1 . . . dxndy1 . . . dyn (4.2)

Where
[
zk−n] denotes the coefficient of zk−n in the product inside the integrand.

Proof: As we did for the proof of Theorem 3.11, we generate a random ranking system

for M = (m1, . . . ,mn)men and W = (w1, . . . ,wn)women as follows: consider two n × n

matrices of independent, identically distributed U[0, 1] random variables X = [Xij] and

Y = [Yij]. A given row in X then represents the preference list of man mi as follows: if

Xij1 < Xij2 < · · · < Xijn then wjn ≻mi · · · ≻mi wj1 . This is analogous for a given row i of Y

and the preference of woman wi. Because the probability of any specific matching is equal

to any other by this construction, without loss of generality we will consider the matching

µ = {(mi,wi)}i∈[1,n].
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The rank Q(µ) of this matching is given by

Q(µ) = n +
n∑

i=1
|{j|Xij < Xii}| (4.3)

Pnk is then the probability of the event A = {µ is stable and Q(µ) = k}. Additionally, de-

fine Pnk(x, y) to be the conditional probability P(A|Xii = xi,Yjj = yj) for i, j ∈ [1, n]. Note

that by construction, all entries Xij,Yij are independent from each other, meaning to prove

4.2, we only need to show that Pnk(x, y) is equal to the integrand, after which Fubini’s the-

orem gives the desired conclusion over all i, j ∈ [1, n].

Letting Iµ be the indicator random variable for the event µ is stable, we can write our

probability as the expectation

Pnk(x, y) =
[
zk]E [Iµ · zQ(µ)|Xii = xi,Yjj = yj

]
(4.4)

We can reformulate the expectation in a way that makes evaluation much more intuitive:

zQ(µ) can be thought of as a probability z event occuring Q(µ) times. By the definition of

rank in 4.3, we have that∑n
i=1 |{j|Xij < Xii}| = Q(µ) − n. Fix z ∈ (0, 1) and note that each

Xij is independent. Consider the following: independently for every entry Xij ∈ X, if Xij <

Xii = xi then label (i, j) as 1 with probability z and 0 with probability 1 − z. Let D be the

event that for a given matrix, all entries Xij < Xii are marked as 1, meaning P(D) = zQ(µ)−n.

Therefore,

E
[
Iµ · zQ(µ)|Xii = xi,Yjj = yj

]
= zn · P(µ is stable and D|Xii = xi,Yjj = yj) (4.5)
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For notation, let B = {µ is stable and D}, meaning the above expectation is

= zn · P(B|Xii = xi,Yjj = yj) (4.6)

For a given (i, j), i ̸= j let Bij then be the event

Xii < Xij or Xii > Xij,Yjj < Yij, (i, j) is labelled 1 (4.7)

With this definition, we have that B =
⋂

i ̸=j Bij. The events Bij, however, are independent

when conditioned on Xii = xi,Yjj = yj, meaning their conditional probability is

P(Bij|Xii = xi,Yjj = yj) = (1 − xi) + xi(1 − yj)z (4.8)

The probability of B is then

P(B|Xii = xi,Yjj = yj) =
∏

i̸=j∈[1,n]
(1 − xi(1 − z + zyj)) (4.9)

Combining this with our results from equations 4.4, 4.5, and 4.6 we get our desired result

Pnk(x, y) =
[
zk−n] ∏

i ̸=j∈[1,n]
(1 − xi(1 − z + zyj)) (4.10)

Thus, Pnk(x, y) equals the integrand in our theorem statement 4.2, meaning by Fubini’s

theorem we have our desired equality.
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4.3 Asymptotic Bound for the Total Rank

Define by rn the minimum total rank for any stable matching and Rn the maximum such

rank, both considered from the male side of the market. In this section, we combine our

insights from the previous parts of this chapter in order to find the convergence of rn,Rn

in probability as n → ∞. To start, we prove the following theorem:

Theorem 4.2: For all α > 0 and δ ∈ (0, eα − 1),

P(rn ≥ n(ln(n)− ln(ln(n))− α)) ≥ 1 − O(n−δ) (4.11)

P(Rn ≤ n2 ln−1(n)(1 + ln−1(n)(ln(ln(n)) + α))) ≥ 1 − O(n−δ) (4.12)

Proof: We start by recalling our expression fromTheorem 4.1 for the probability Pnm that

a stable matching of size n has rank m:

Pnm =

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

[
zm−n] ∏

1≤i̸=j≤n
(1 − xi(1 − z + zyj))dx1 . . . dxndy1 . . . dyn (4.13)

Additionally, let Φ(x, y, z) =
∏

1≤i̸=j≤n(1 − xi(1 − z + zyj)), a convention we will use for this

proof to simplify the notation:

Pnm =

∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

[
zm−n]Φ(x, y, z)dxdy (4.14)
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For each k ∈ [n, n2], which are the bounds for total rank, we can write

P(rn ≤ k) ≤ n!
k∑

m=n
Pnm P(Rn ≥ k) ≤ n!

n2∑
m=k

Pnm (4.15)

We can now apply Chernoff bounds [3], where inf refers to the infimum of a set, to get

P(rn ≤ k) ≤ n!
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

inf
z∈(0,1]

(
zn−kΦ(x, y, z)

)
dxdy (4.16)

P(Rn ≥ k) ≤ n!
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

inf
z≥1

(
zn−kΦ(x, y, z)

)
dxdy (4.17)

Part I:The following part of the proof will focus on the rn bound. We start by noting that

(1 − xi(1 − z + zyj)) can be bounded by e(−xi(1−z+zyj)). Applying this and integrating our

expression in 4.16 with respect to y, we get

P(rn ≤ k) ≤ n!
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
2n

inf
z∈(0,1]

(
zn−kes(z−1)(n−1)

n∏
j=1

1 − e−zsj

zsj

)
dx (4.18)

Where the simplification is analogous to the one performed in our proof of Theorem

3.11 and s =
∑n

i xi and sj =
∑

i ̸=j xi are defined identically. Using the results we obtained

in 3.48 to 3.50 and the fact that z ≤ 1, we know for a constant c that

n∏
j=1

1 − e−zsj

zsj
≤ c

(
1 − e−zs

zs

)n
(4.19)

Moreover,Theorem 3.9 then tells us that for H(s, z) := s(z − 1)(n − 1) + n ln(1 − e−zs) −
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k ln(z)− ln(s)we have

P(rn ≤ k) ≤ cn
∫ n

0
inf

z∈(0,1]
eH(s,z)ds ∀k ∈ [n, n2] (4.20)

Now note that looking at our theorem statement in 4.11 we want to show that for k =

n(ln(n) − ln(ln(n)) − α), the right hand side of 4.20 goes to 0 as n−δ for δ ∈ (0, eα − 1). To

do this, we first look at our expression H(s, z) for zs = b where b satisfies

h(β) = k for h(β) := β ·
(
(n − 1) + n

eβ − 1

)
(4.21)

With this condition, we have

Hz := s(n − 1) + ns
ezs − 1 − k

z = 0 (4.22)

In addition, we have that

h′(β) ≥ lim
β→0+

h′(β) =
n
2 − 1 (4.23)

Meaning that 4.21 has a unique positive root b, which, for k defined as above, is

b =
k
n (1 + O(ln(n)/n)) (4.24)

= ln(n)− ln(ln(n))− α + O
(
ln2(n)

n

)
(4.25)

< ln(n)− ln(ln(n))− α′ for all α′ < α (4.26)
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This allows us to simplify the integral in 4.20, noting that if s ≤ b we can let z = 1 and

otherwise let z = b
s , meaning

∫ n

0
inf

z∈(0,1]
eH(s,z)ds ≤

∫ b

0

(1 − e−s)n

s ds + (1 − e−b)n

bk eb(n−1)
∫ ∞

b

sk−1

es(n−1)ds (4.27)

≤
∫ b

0

(1 − e−s)n

s ds + (1 − e−b)n

(b(n − 1))k eb(n−1)(k − 1)! (4.28)

For ease of notation, we will refer to the first term as T1 and the second as T2. Then,

T1 ≤ b(1 − e−b)n−1 (4.29)

= O
(

be−ne−b
)

(4.30)

= O
(

ne−α′)
for α′ ∈ [0, α] (4.31)

Which is our desired bound. We can now focus our efforts on T2, where we utilize Stir-

ling’s formula with the functions

Γn(k) := Fn(k, b) (4.32)

Fn(κ, β) := β(n − 1) + n ln(1 − e−β)− κ ln(β) + (κ− 1) ln
(

κ− 1
e(n − 1)

)
(4.33)

to get

T2 = O
(

eΓn(k)
√

ln(n)
n

)
(4.34)
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Wewant to find an upper bound on eΓn(k), meaning we first turn our focus to Fn(κ, β).

dFn(κ, β)

dβ

∣∣∣∣∣
β=b

= (n − 1) + n
eβ − 1 − κ

β

∣∣∣∣∣
β=b

= 0 (4.35)

=
dFn(κ, β)

dβ = ln

(
κ− 1

β(n − 1)

)
(4.36)

This means that we have a stationary point (κ0, β0) of Fn(κ, β) defined by

κ0 = β0(n − 1) + 1 (4.37)

eβ0 − 1 = nβ0 (4.38)

Solving for this point, we get that

κ0 = n(ln(n) + ln(ln(n))(1 + O(1/ ln(n)))) (4.39)

β0 = ln(n) + ln(ln(n))(1 + O(1/ ln(n))) (4.40)

Plugging these values in to our original equation 4.32 we get

Γn(κ0) = Fn(κ0, β0) = n ln(1 − e−β0)− ln(β0) (4.41)

= − ln(β0) + O(ne−β0) (4.42)

= − ln(β0) + O(1/ ln(n)) (4.43)

We will now show that Γ evaluated at κ0 is actually equal to the maximum value of Γ over
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all κ. To do this, we use 4.35 and 4.36 to get that

d
dκΓn(κ) =

dFn(κ, β)

dβ

∣∣∣∣∣
β=b

(4.44)

= ln

(
1 + 1

β(n − 1)

(
βn

eβ − 1 − 1
))

(4.45)

Where we note that because k < κ0 this final expression is less than 0, meaning Γn(k) <

Γn(κ0). In addition, looking closely at our definition of k and expression for κ0, we see that

their difference, κ0 − k should be close to 2n ln(ln(n)). Choosing κ1, β1 such that

nβ1
eβ1 − 1 = ln(ln(n)) (4.46)

We get, analogous to our result in 4.40, that

β1 = ln(n) + ln(ln(n))(1 + O(1/ ln(n))) (4.47)

Then, comparing our equations for k, κ0, κ1 we have that κ1 ∈ (k, κ0), allowing us to

bound

Γn(k) = Γn(κ0)−
∫ κ0

k
Γ′

n(κ)dκ (4.48)

≤ Γn(κ0)−
∫ κ1

k
Γ′

n(κ)dκ (4.49)

Using our expression from 4.45 construction in 4.46 to bound βn
eβ−1 , for all κ ∈ [k, κ1]:

d
dκΓn(κ) = (1 + o(1)) 1

eβ (4.50)
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Taking the derivative of κwith respect to b, we have

dκ
db = (n − 1) + n(eb − beb − 1)

(eb − 1)2 (4.51)

Allowing us to now combine our previous equations to see that

Γn(k) ≤ Γn(κ0)− (1 − o(1))n(e−b − e−β1) (4.52)

≤ −eα′
ln(n) for all α′ ∈ (0, α) (4.53)

Where we get 4.53 by bounding ne−b ≥ eα′ as in 4.29 and bounding ne−β1 = O(1/ ln(n))

using 4.47. Thus, we have that T2 is bounded as

T2 = O
(

n−1/2−eα′)
(4.54)

Combining these results and our definition of k, we thus have that

P(rn ≤ n(ln(n)− ln(ln(n))− α)) = O
(

n−eα′
+1
)

(4.55)

Which gives our desired bound.

Part II:We now turn our attention to the Rn bound. Analogously to our rn proof, we

start by noting that for a constant c,

Pr(Rn ≥ k) ≤ cn
∫ n

0
inf
z≥1

eH1(s,z)P(Mn ≤ s−1)ds (4.56)
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Where we define for constants f and s0,

H1(s, z) =


H(s, z) + fsz s ≤ s0

H(s, z) s > s0

(4.57)

As we did for rn, looking at our theorem statement in 4.12 we want to show that for k =

n2

ln(n)(1−(ln(ln(n))+α) ln−1(n)), the right hand side of 4.56 goes to 0 as n−δ for δ ∈ (0, eα−1).

The unique root of 4.21 is now

b =
n

ln(n)

(
1 + ln(ln(n)) + αn

ln(n)

)
where αn = α + o(1) (4.58)

In addition, defining

b1 =
n

ln(n)

(
1 + ln(ln(n)) + α′

ln(n)

)
where α′ ∈ (0, α) (4.59)

This allows us to simplify the integral in 4.56, noting that if s ≥ b we can let z = 1 and

otherwise let z = b
s , meaning for

T1 = efb
∫ b1

0
sk−1e−s(n−1)P(Mn ≤ s−1)ds (4.60)

T2 =

∫ b

b1

sk−1e−s(n−1)P(Mn ≤ s−1)ds (4.61)

T3 =

∫ n

b

1
s(1 − e−s)nP(Mn ≤ s−1)ds (4.62)
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We can bound our desired integral as

∫ n

0
inf
z≥1

eH1(s,z)P(Mn ≤ s−1)ds ≤ 1
bk (1 − e−b)neb(n−1)(T1 + T2) + T3 (4.63)

We start with T3 since it’s the simplest to analyze. When s ∈ [b, n]we have that P(Mn ≤

s−1) ≤ P(Mn ≤ b−1) by the definition of b from 4.58. We then have, by our bounds from

Chapter 3, that

T3 ≤ P(Mn ≤ b−1)

∫ n

b

1
sds = O

(
n−eα3) for all α3 ∈ (0, α) (4.64)

Now we bound T2, starting with a similar bound of

T2 ≤ P(Mn ≤ b−1
1 )

∫ b

b1

sk−1e−s(n−1)ds (4.65)

Looking at each term separately, once again using the inverse b−1 of 4.58,

P(Mn ≤ b1
−1) = O

(
n−eα2) for all α2 ∈ (0, α′) (4.66)

In addition, the integral can be bounded from above by

∫ b

b1

sk−1e−s(n−1)ds ≤
∫ ∞

0
sk−1e−s(n−1)ds (4.67)

=
(k − 1)!
(n − 1)k (4.68)

= O
((

k − 1
e(n − 1)

)k−1
)

(4.69)
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Where we use the fact that from our definition of k, k is dominated by n2

ln(n) for large n.

Therefore, we have that

T2 = O
(

n−eα2

(
k − 1

e(n − 1)

)k−1
)

(4.70)

Finally, we get to T1, which for which we start with the similar first bound

T1 ≤ efb
∫ b1

0
sk−1e−s(n−1)ds (4.71)

= efb
∫ b1

0
eln(s)(k−1)−s(n−1)ds (4.72)

Define the power of the exponent as φ(s) = ln(s)(k − 1)− s(n − 1). Then, the maximum of

φ(s) is s∗ = k−1
n−1 . Plugging in our definition for k, we get

s∗ = n
ln(n)

(
1 + (ln(ln(n)) + α∗) ln−1(n)

)
where α∗ = α + o(1) (4.73)

= b1(1 + o(1)) (4.74)

Where we get the second equality by comparing to our definition of b1 in 4.59. Now, be-

cause d2x
dx2φ(s) = 1−k

s2 we can write, for s′ ∈ [b1, s∗], that

T1 ≤ b1efbeφ(b1) (4.75)

≤ b1efbeφ(s∗)+ 1
2φ

′′(s′)(b1−s∗)2 (4.76)

= O
((

k − 1
e(n − 1)

)k−1
e

−gn2
2 ln3(n)

)
for g > 0 (4.77)

57



Combining our bounds for T1,T2,T3 with 4.63 we then have

P(Rn ≤ k) ≤ cn(n−eα2 eΓn(k) + n−eα3 ) (4.78)

Which gives our desired bound since we showed in 4.43 that Γn(k) has a maximum that is

less than 0.

This theorem actually does the brunt of the work for our eventual desired result, which is

the asymptotic convergence of rn,Rn. Specifically, we will leverageTheorem 4.2 to show

the following:

Theorem 4.3: The limit in probability as n → ∞ of rn,Rn is

rn → n ln(n) Rn → n2

ln(n) (4.79)

Proof: Wewill pull in a few important results within the field. First, recall that the man-

proposing deferred acceptance algorithm of Gale and Shapley [4] resulted in the man-

optimal stable matching, meaning the overall rank of matches for men was minimized.

McVitie andWilson [9] provided an analogous algorithm in which each round consists of

a single proposal, meaning the minimum rank rn, which is the rank generated by the male-

optimal algorithm, can be computed as the number of steps in their algorithm. Knuth [6]

andWilson [20] then showed that this is dominated by the number of draws in the n−size

coupon collector problem. We thus start by formalizing this problem and determining

the expected number of draws.

The coupon collector problem asks, given n coupons, howmany times do you expect to
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draw with replacement before having drawn each coupon at least once? To answer this,

we construct random variables D, di which measure the number of draws to collect all n

coupons and the number of draws it takes to draw the ith coupon after i − 1 unique ones

have been seen, respectively. The probability of collecting a new coupon after i − 1 have

been seen is

pi =
n − (i − 1)

n =
n − i + 1

n (4.80)

Then, di follows a geometric distribution with parameter pi. Using linearity of expecta-

tion, we have that

E[D] =
n∑

i=1
E[di] (4.81)

=
n∑

i=1

1
pi

(4.82)

=
n∑

i=1

n
n − i + 1 (4.83)

= n
n∑

i=1

1
n − i + 1 (4.84)

= nHn (4.85)

Where Hn is the nth harmonic number, defined as 1 + 1
2 + · · · + 1

n . For ϵ > 0 let A be the

event that a particular coupon hasn’t been seen in the first N = (1 + ϵ)n ln(n) draws. Then,

P(rn ≤ (1 + ϵ)n ln(n)) ≥ 1 − nP(A) = 1 − n
(

1 − 1
n

)N
(4.86)
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≥ 1 − ne−N
n = 1 − n−ϵ (4.87)

Meaning the limit of P(rn ≤ (1 + ϵ)n ln(n)) approaches 1 as ϵ ln(n) approaches∞. We can

combine this with our result for rn inTheorem 4.2 to get that for α > 0 and ω → ∞,

P (rn ∈ [n(ln(n)− ln(ln(n))− α), n(ln(n) + ω)]) → 1 (4.88)

Meaning rn
n ln(n) approaches 1 in probability as desired.

We nowmove on to the Rn bound. Once again consideringMcVitie andWilson’s man-

proposing algorithm, let zi be the number of proposals received by woman wi and let yi be

the rank of her partner according to her preference list. We have

E[z1] = · · · = E[zn] ≤
1
nE[D] = Hn (4.89)

Conditioning on zi = k, the rank yi is distributed as Bin(n − k, 1
k+1), meaning

E[yi|zi] = 1 + n − zi
zi + 1 =

n + 1
zi + 1 (4.90)

Plugging in 4.89 and using Jensen’s inequality, we have

E[yi] ≥
n + 1

E[zi] + 1 =
n + 1

Hn + 1 (4.91)
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Now, linearity of expectation tells us that

E[Rn] =
n∑

i=1
E[yi] ≥

n(n + 1)
Hn + 1 =

n2

ln(n)(1 + O(1/ ln(n)) (4.92)

Now, similarly to our analysis for rn, we can bring inTheorem 4.2 to get that Rn ln(n)
n2 ap-

proaches 1 in probability.

This result should be quite in line with our intuition about the marriage market: when

men propose, then generated stable match is quite favorable to them as a whole. From

Theorem 4.3, however, we see that the extent to which this initiative pays off is drastic:

since Rn, the maximummale-sided rank for a stable matching corresponds to the woman-

proposing algorithm, the side that proposes has, in expectation, an n
ln2(n) factor improve-

ment in rank.
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5
Conclusion

In this thesis, we set out to explore the asymptotic structure of the space of stable match-

ings in symmetric markets. Specifically, we showed important bounds from Pittel [11],

[12] on the expected number of stable matchings and the expected minimum and maxi-

mum rank of stable matchings. This analysis provides a different way of looking at mar-
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riage markets, with a focus on average behavior over large sets instead of on specific, game-

theoretic concerns.

In addition, these complex bounds were supported by an exploration in more fundamen-

tal probability theory, with a particular emphasis on how we can characterize partitions

of the unit interval. Moreover, in order to fully understand the rich bounds of Pittel and

Knuth [6], we built up foundational knowledge and intuition in stable matching, with a

focus on key historical moments, important applications, and interesting mathematics.

Moving forward, the work in this thesis can be easily extended by considering the two

implicit assumptions made throughout our proofs: that the market we are dealing with

is symmetric and that preferences are complete and strictly ranked. In many real-world

markets, designers have to deal with allocating goods between or matching among sets of

people that are vastly different in size, where it may not even be feasible for an individual

to have preferences over all items. In particular, the basic deferred acceptance protocol

fails to account for instances where two potential partners may be equally desirable to an

individual. These changes require an expansion in the notion of stability, with the exis-

tence of stable matches with preference lists which have ties having been proven by Irving

[5]. Moving beyond preference lists, another real-world obstacle to labor and residency

markets is the existence of family and spousal connections. While strategy-proofness and

stability may be important theoretical concerns, a practical matter that hospitals have to

contend with in the residency match is preventing couples from being assigned to resi-

dency programs far from each other. When couples were modeled as having preferences

over pairs of hospitals, it was shown that the set of stable matches could be empty [14].

However, a generalized applicant-proposing deferred acceptance algorithm was proposed
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by Roth and Peranson which takes multiple passes to produce a stable matching with

high probability [16]. These constructions are more general and applicable than our sim-

ple symmetric market and, if work by Pittel [13] is an indicator, they also lead to deeper,

more complex relations that build upon the ones proven here.
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