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Abstract—Privacy preservation is a critical consideration in
the implementation of federated learning towards applications
involving vulnerable data, like healthcare. This paper thus
proposes two advancements towards this paradigm: floating-point
homomorphic encryption and novel central server aggregation
methods for the Paillier cryptosystem. The former employs both
RSA and Paillier in order to encrypt the FP32 representation,
eliminating the need for floating-point to integer conversions. This
method is experimentally observed to have similar asymptotic
runtime as the Python-Paillier implementation while having no
encryption/decryption loss. The latter consists of two theoretical
constructions that are tested against a baseline Paillier heuristic,
with experimental results showing similar testing accuracy. These
results, which can be extended to utilize different PHE schemes,
provide a groundwork for making efficient PHE in federated
learning a reality.

I. INTRODUCTION

IN recent years, the explosion of low-cost cloud computing
services has enabled consumer adoption of complex ma-

chine learning protocols that leverage large volumes of data.
A natural use case of this decentralized computing power is
federated learning [1], which reduces the bottleneck of local
hardware by allowing a large number of devices to train a
shared model in a decentralized fashion.

One field that stands to benefit greatly from this paradigm
is healthcare, where A.I. models have shown efficacy in classi-
fying diseases based on images and biomarkers. In particular,
with hospitals existing on a broad spectrum of local computa-
tion power, federated learning brings the promise of utilizing
vast amounts of local data that otherwise couldn’t be trained
on. A major roadblock for widespread adoption, however, are
regulations on the privacy and movement of patient data—as
shown by [2], [3], effective attacks on federated learning exist
that exploit the weight updates in each round.

This paper thus studies partially homomorphic encryption
(PHE) as an avenue for efficient federated learning with
privacy guarantees. Two large problems in PHE implemen-
tation within federated learning are tackled: the requirement
for floating point numbers to be quantized into integers for
encryption/decryption and the lack of central server aggrega-
tion that preserves homomorphic property. For the former, a
novel mixed scheme for native homomorphic floating point
encryption is constructed using RSA and Paillier. For the
latter, two novel central server aggregation techniques are
constructed. Quantization error is calculated and testing on
CIFAR-10 classification is conducted, showing that the Pail-

lier heuristics achieved better accuracy than baseline Paillier
without requiring significantly more resources.

These results provide a way to perform homomorphic en-
cryption, which works over integer rings, for the high precision
floating point data required in machine learning. In addition,
we illustrate the possibility of central server division methods
even in additive homomorphic schemes, which allow for better
training convergence without sacrificing on accuracy.

II. PROBLEM TO SOLVE

A. Problem Statement

This paper focuses on PHE as a defense against malicious
backdoor attacks on federated learning that reconstruct private
samples based on transmitted weights. Specifically, we look to
solve two major problems towards effective PHE use within
the field: integer quantization and central server averaging. The
former arises because PHE schemes operate over finite fields
such as Zp, meaning high-precision floating point numbers
need to be quantized to integers, causing accuracy loss. The
latter is a problem because PHE schemes by definition only op-
erate over one kind of gate (either addition or multiplication).
In our case, the central server is unable to send the average
weight back to each agent under the Pailler cryptosystem to
perform FedAVG. We thus present theoretical constructions
to address these issues and implement them against baseline
metrics to show their efficacy.

B. Project Goals

This paper has three novel objectives:

• Construct native floating point homomorphic encryp-
tion: implement a method to encrypt FP32 values with ar-
bitrary precision such that the central server can perform
homomorphic multiplication without quantization loss.

• Construct privacy-preserving central server aggrega-
tion: develop techniques to enable additively homomor-
phic central server aggregation that is close to an average
while revealing no information about the participants in
each round.

• Measure accuracy loss: evaluate the accuracy loss
present in applying the baseline Paillier model as well as
our theoretical heuristics. In addition, determine whether
the heuristics have a significant impact on training time.
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C. Evaluation Metrics

First, we measure the accuracy per round of the global feder-
ated learning model with a variety of encryption schemes and
central server aggregation algorithms. Specifically, we measure
accuracy for baseline encryption (no encryption) with FedAVG
aggregation, Paillier encryption with Sum aggregation, Paillier
encryption with Heuristic1 aggregation, and Paillier encryption
with Heuristic2 aggregation. Finally, we encrypt and then
decrypt a series of FP32 values with Paillier and with our
novel mixed scheme in order to measure the difference in
encryption time.

D. Theoretical Background

Definition 1 (Public Key PHE [4]). For a family of circuits
C, a C-partially homomorphic encryption scheme is a tuple
(G,E,D,EV AL) of randomized algorithms with:

• Key Generation: G(1n) which takes in n and returns a
public, private key pair (e, d).

• Encryption: Ee(m) takes in key e, plaintext m and
returns a ciphertext c.

• Evaluation: EV ALe(C, c1, . . . , ck) takes in key e, a
circuit C ∈ C, and a tuple c1, . . . , ck of ciphertexts and
previous evaluations and returns an output.

• Decryption: Dd(c) takes in key d and ciphertext or
evaluation result c and returns a plaintext.

We now introduce the Paillier encryption scheme, the
treatment of which is based on the original paper [5]. For
large primes p, q define n = pq and λ = lcm(p − 1, q − 1).
In addition, consider the following notation:

Notation. An integer z is said to be an nth residue mod n2

if there exists y ∈ Z∗
n2 such that z = yn mod n2. Construct

the set Sn = {0 ≤ u < n2 : u = 1 mod n and define the
function L with domain Sn such that L(u) = u−1

n . Finally,
let B ⊂ Z∗

n2 be the set of elements whose order is divisible
by n.

Definition 2 (Paillier Encryption Scheme). Randomly select
a base g ∈ B; this can be done efficiently by checking if

gcd(L(gλ mod n2), n) = 1

The public key is (n, g), and the private key is λ. 1

• Encryption. Given plaintext m ∈ [0, n), select a random
r ∈ [0, n) The encryption of m is c = gm · rn mod n2.

• Decryption. Given cyphertext c ∈ [0, n2). The decryption
of c is

m =
L(cλ mod n2)

L(gλ mod n2)
mod n.

Theorem. The Paillier system is additively homomorphic.

Proof. Let E,D be the encryption and decryption functions.
For all plaintexts m1,m2 with base g, modulus n, and random
r, we have

D(E(m1) · E(m2)) = D
(
gm1rn · gm2rn mod n2

)
1One can check that (p, q) can be easily recovered from n, λ.

= D
(
gm1m2(r1r2)

n mod n2
)

= D(E(m1 +m2)) = m1 +m2 mod n

III. PROPOSED APPROACH

First, we note that because encryptions and decryptions in
our Paillier system occur over a 3072-bit modulus, normal
methods of floating point quantization involve multiplying
each FP32 value by bi where the base b = 16 and the exponent
i is adjusted for the required level of precision. The resulting
integers do not map exactly back to the same FP32 values,
causing model accuracy loss. Our novel approach utilizes RSA
[6] and Paillier [5] encryption, which are multiplicatively and
additively homomorphic respectively, as follows: Consider a
32-bit floating point number f represented with a 1-bit sign
s, 8-bit exponent e, and 24-bit (one implicit bit) mantissa m.
Let the overall encryption function be ENC and let Er, Ep be
RSA and Paillier encryption functions, respectively. To encrypt
f , we follow the following procedure:

ENC(f) = {Er(s), Ep(e), Er(m)}

Recall that the multiplication of FP32 values is performed
through addition of their exponents and multiplication of their
signs and mantissas. Now, consider the product two FP32
values f1, f2 encrypted in this manner.

ENC(f1) · ENC(f2)

= {Er(s1) ·Er(s2)}, {Ep(e1) ·Ep(e2)}, {Er(m1) ·Er(m2)}

= {Er(s1·s2)}, {Ep(e1+e2)}, {Er(m1·m2)} = ENC(f1·f2)

Therefore, this encryption scheme is multiplicatively homo-
morphic for floating point values. This is superior to the
existing quantization paradigm as it directly manipulates the
FP32 representation and thus incurs no quantization loss.
From a performance perspective, this approach removes the
costly large number exponentiation and multiplication used
traditionally to encode FP32 values as integers. However, it
also requires multiple encryptions per value. With the correct
bit interpretation, this approach could be easily modified to
combine the sign and mantissa encryptions, but it still requires
at least two encryptions.

In addition, on the Paillier encryption for federated learn-
ing front, our novel contribution consists of two theoretical
constructions for approximate-division in the additively ho-
momorphic paradigm, which are detailed in Section V. These
will enable the central server to send back results that are
closer to the average—as opposed to the current standard of
using the whole encrypted sum to update the model—which
we expect will improve convergence, although at the potential
cost of additional time per epoch.

IV. INTELLECTUAL POINTS

This project provides two methods of improving federated
learning with PHE: first by constructing a method by which
FP32 numbers can be encrypted and multiplied without incur-
ring quantization loss and then by enabling averaging in an
additively homomorphic scheme. Both of these contributions
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are theory-based and can be extended into different use-
cases and different PHE schemes with slight modifications. In
addition, the Paillier averaging constructions are compelling
from a theoretical standpoint because they illustrate a general
method of building approximate divisions (and potentially nth

roots) into schemes that otherwise would not allow them.
Finally, the testing results show that these constructions even
without further optimization perform in the expected manner,
reducing encryption time and improving accuracy at the cost
of computation power. Thus, this work presents a rich avenue
for further explorations into the efficacy of PHE in federated
learning and similar privacy-focused tasks.

V. WORK PERFORMED

A. Mixed Encryption

We developed a Python library called MixCrypt to imple-
ment the floating point encryption scheme described above.
This library provides an encrypt function that takes as input a
PyTorch tensor of type torch.float32 and returns the encrypted
sign, exponent, and mantissa as a tuple. To accomplish this, we
first view the FP32 values as uint32 values instead, and then
use bit masking and bit shifting operations to extract integers
representing the sign, exponent, and mantissa bitstrings. From
there, we pass these integers to the RSA, Paillier, and RSA
encryption algorithms, respectively, and return the encrypted
results. MixCrypt also provides a decrypt function, which
works similarly but in reverse. It takes as input the encrypted
signs, exponent, and mantissa, and returns a PyTorch tensor
of type torch.float32. We chose to work with tensors as our
input and output to make integration with federated learning
models easy. With this implementation, one can pass in the
weight tensors stored in the model’s state dictionary instead
of being forced to loop over the individual values.

B. Central Server Aggregation

Since additions are performed mod n, under the right condi-
tions we can perform divisions. More precisely, for Heuristic
1, suppose that gcd(k, n) = 1 and x ∈ [0, nk) is divisible by
k. This ensures that x/k = (k−1 mod n)·x mod n. Similarly
if −nk < x < 0, then we have

x/k =
(
(k−1 mod n) · x mod n

)
− n.

It is important that we assume x is divisible by k, for
otherwise we cannot guarantee that x/k ∈ Q is close to
x · (k−1 mod n) mod n.

To use this strategy, for a round in which k agents partic-
ipate, the central server sends the agents some multiple αk.
Then, before sending their update, each agent first rounds their
update to the nearest multiple of αk. This ensures that the sum
of the updates is divisible by k, and so the mean of the updates
can be correctly computed by the central server.

The above strategy, while hiding the true number of agents
participating in each round, gives additional information to the
agents. We thus propose the following construction, Heuristic
2, to perform a weighted average of the updates, which weighs
each update within a multiplicative factor of 2.

Let m be maximum number of agents that can participate
in a round and let d be the smallest positive integer satisfying
2d ≥ r. Before sending an update, each agent rounds their
value to the nearest multiple of 2d. Note that this means the
number of agents must be O(log(n)/b), where b is the number
of bits of accuracy desired.

Suppose the central server wants to aggregate k updates.
Let d′ be the smallest positive integer such that 2d

′ ≥ k. Then
d′ ≤ d since k ≤ m. Of the k updates, the central server
randomly selects 2k − 2d

′
of them to divide by 2d

′
, and the

remaining 2d
′ −k to divide by 2d

′−1. These are then summed
together. This is indeed a weighted average since

2k − 2d
′

2d′ +
2d

′ − k

2d′−1
= 1.

Although we have used base 2 for simplicity, this easily
generalizes to other bases at the cost of loss of accuracy due to
rounding errors being larger, but allowing for weights which
are closer to one another.

C. Implementation

To support our analysis, we implemented a flexible feder-
ated machine learning model with support for easily config-
urable accumulation and encryption functions. We start with
a ConvNet class that defines our convolutional model—9
convolutional layers of progressively increasing size, each
using a BatchNorm2D sub-layer and the ReLU activation
function. We also have an AdaptiveAlgPool layer and a linear
classifier layer.

We then define a Device class which represents a local
device in the federated learning network. Each device has an
id, a dataset, a ConvNet instance, a local epochs parameter,
an encryption scheme, and a few other hyperparameters.
Devices sample randomly from their dataset to construct their
training set. Each device has standard train and test methods
which use their local training dataset to improve their local
model, and then a global test dataset to evaluate their local
model. Each device also has transmit and load methods. The
transmit method encrypts the device’s model weights using the
encryption scheme and returns those encrypted values. This
method is called by the central server to get the encrypted
weight updates. The load method allows the central server to
provide a device with a set of encrypted weights, which the
device then decrypts and loads as their state dictionary.

The Server class represents the central server, and it has a
copy of the global model weights, as well as a configurable
aggregation function to use when receiving weight updates.

Finally, the driver code initializes the server and device
instances, then begins the federated learning rounds. In each
round, a number of devices are selected to participate. These
devices train on their local training dataset, and when finished
the server calls all of their transmit methods to get a set
of encrypted weights. The server then merges these weights
according to its accumulation function, and calls the load
method for every device to set this new, encrypted set of
weights as the global model. At the end of each round, we
check the global model’s test accuracy and record that data.
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VI. RESULTS AND DISCUSSION

As illustrated in Figure 1, the MixCrypt was slower in
encryption/decryption but looked to scale linearly with tensor
size, same as the standard Python-Paillier library. MixCrypt,
however, doesn’t have any loss in its encryption/decryption
and the actual implementation can be sped up through further
parallelizing and tensor-level encryption, meaning it has high
potential for real-world use.

Fig. 1. Encryption and decryption time in CPU cycles for Python-Paillier and
MixCrypt

Figure 2 then shows the test accuracy per epoch for the
baseline FL model, along with baseline Paillier (with central
server returning the sum), and the two heuristics. Of note is
that the per-epoch training time compared to baseline Paillier
was 23.7% longer for Heuristic 1 and 29% longer for Heuristic
2. From these results, we note that Heuristic 2 is an effective
approximator for the average, with it being more accurate in
the task than baseline Paillier. In addition, neither heuristic
suffers a large computation penalty relative to the cost of using
any encryption at all, meaning these methods, when optimized,
will provide a better alternative to baseline Paillier.

Fig. 2. Model test accuracy per round for different encryption schemes and
accumulation functions

VII. RELATED WORK

To motivate the need for encryption in federated learning,
Enthoven and Al-Ars [2] propose a novel attack method named
the First Dense Layer Attack (FIDEL), which is effective in
reconstructing private training samples from weight updates
provided to the central server for densely connected networks
and convolutional neural networks. They show that the FIDEL
attack can recover about 66% of private data samples from a

client’s model update with very little computational resources.
In a similar vein, Wang et al. [3] explore malicious server
attacks on specific agents in order to recover private data.
They show user-level privacy leakage in a framework that
incorporates generative adversarial networks (GANs) with
a multi-task discriminator, which enables the generator to
reconstruct user specified privacy data without interfering in
the training process of federated learning.

Within the realm of partially homomorphic encryption, Fang
et al. [7] and Muhammad et al. [8] provide accuracy and speed
results for machine learning models. Muhammad et al. do
this by implementing an on-device machine learning model
that learns on input encrypted by the Paillier scheme and
achieves 92.2% accuracy on the MNIST hand-written digit
identification dataset. Fang et al., on the other hand, apply
Paillier encryption to a multi-party federated learning protocol,
showing the dependence of computational overhead on key
length and accuracy deviation on classification tasks of 1%.

Jiang et al. [9], on the other hand, tackle the significant
computation and communication overhead of homomorphic
encryption schemes by proposing FLASHE, an encryption
framework tailored for federated learning. FLASHE drops
asymmetric key design and instead only performs modular
addition with random numbers, vastly lowering the compu-
tational cost of each encryption. They find that FLASHE
only has a 6% impact on training compared to unencrypted
plaintexts, which is a substantial improvement over traditional
PHE methods. Finally, Moon et al. [10] construct an FP32
encryption scheme for FHE systems for privacy-preserving
data analysis. On the theoretical side, Zhang et al. [11]
provide a method for transforming the high computational
cost of homomorphic operations into a high communication
complexity and Li et al. [12] explore another avenue for
improving encryption/decryption efficiency: altering the un-
derlying homomorphic framework.

VIII. CONCLUSION

Our work focused on advancing the practicality of PHE in
federated learning by developing novel methods for central
server aggregation during Paillier encryption and eliminating
the need for floating-point conversions to integers in PHE.
We showed that MixCrypt achieves a comparable asymptotic
runtime to the standard Python-Paillier approach with no loss
during encryption/decryption, opening the door for realistic
implementations of PHE in federated learning to preserve
privacy. Our theoretical constructions are also validated exper-
imentally, where the second, more complex heuristic achieved
better test accuracy, likely due to better weight convergence.
Our constructions are novel within the literature, with only
an analog of MixCrypt having appeared for FHE schemes
[10]. We achieved the three broad goals initially scoped
out and through our implementation process, we merged the
gap between efficient theoretical results and practicable code.
Future work in this area would involve parallelization of en-
cryption for ML workflows, which was our major bottleneck,
theoretical expansion of our heuristics to different partially
homomorphic encryption schemes, and improvement of the
MixCrypt algorithm to enable floating point addition.
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