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ABSTRACT

The practice of gerrymandering, which allows for a populace’s votes to be diluted or concentrated
unfairly, is prevalent in representative governments where electoral boundaries are redrawn. In the
United States, due to the 1986 decision in David v. Bandemer, where it was deemed that there
was no practicable test for gerrymandering, a prominent avenue of research in the field centers on
detection metrics. Work by DeFord et al. [1] utilized MCMC sampling to efficently generate districts,
which can then be used to determine whether a specific redistricting plan is unlikely relative to the
possibilities. These algorithms, called Flip and ReCom, have runtimes on the order of minutes or
hours per sample, however. In our work, we thus attempt to accelerate this sampling process by
training a graph autoencoder (GAE) model, called GAErryChain. We find that GAErryChain is able
to generate some degree of contiguous redistricting with significant computation improvements as
well. We note that GAErryChain is currently unsuitable for actual sampling and we provide methods
which can improve its performance.

1 INTRODUCTION

In many forms of representative government, electoral boundaries are imposed in order to divide up
a voting population into districts, which can then elect individuals into a Senate or Parliament. In
the United States, the process of drawing these boundaries, called redistricting, occurs every ten
years and is often handled by each state’s legislatures and governors.

Redistricting has major consequences on election outcomes because it alters the voter composition
and size of each district, thus possibly concentrating or diluting support for a particular candidate.
The act of using this process to establish an unfair advantage is called gerrymandering and it has
seen frequent use in diluting the voting power of minority groups, increasing support for a preferred
party, and maintaining control for incumbent politicians [2].

However, due to the ruling in David v. Bandemer, a 1986 Supreme court case—which deemed
gerrymandering harmful to norms of fair representation but noted that without a practicable test, the
issue itself was not justiciable [3]—a prominent avenue of current research in the field involves the
creation and study of metrics that can indicate the existence of a partisan gerrymander.



In this paper, we extend the work of DeFord et al. [1], which provides a method of analyzing
different redistricting plans based on their properties relative to a representative sample of possible
plans. Specifically, they define a new family of Markov chain Monte Carlo (MCMC) random
walks, called ReCom Markov Chains, to sample the space of possible district partitions. This
sampling, however, is computationally costly and generating districting plans is time-intensive. Our
work thus aims to speed up their sampling through the use of neural networks, specifically a graph
auto-encoder architecture (GAE).

Section 2 examines the current literature in the field related to our work. Section 3 then introduces
our experimental methods. Section 4 gives an overview of important results and is followed by a
discussion in Section 5.

2 RELATED LITERATURE

Within the space of gerrymandering detection—and general legislative fairness—one metric that
has seen widespread use is partisan symmetry. As described by Gelman and King in 1994 [4], this
measure determines whether multiple parties perform identically given the same vote share.

Work by Stephanopoulos et al. in 2015 [5] forwarded the idea of an efficiency gap in identifying
partisan gerrymanders. This statistic is based on the difference in wasted votes, those which don’t
affect the outcome, between the parties. The paper argues that with parties of equal support, a
redistricting that is non-partisan would have an efficiency gap of zero and proposes a threshold of
.08, above which a plan would be considered gerrymandered.

A third way of determining possible gerrymanders is through the geometry of the districts, with
multiple definitions of compactness being proposed: Reock in 1961 [6] posited using the ratio of
a district’s area to the area of the smallest circle containing the district. This idea was extended
by Niemi et al. in 1990 [7] to the ratio of a district’s area to the area of its convex hull. Finally,
Polsby and Popper in 1991 [8] utilized the a ratio proportional to district area over the square of
perimeter. Although these metrics have been frequently used in confirming the visual intuition
of gerrymandering, Barnes and Solomon in 2018 [9] showed that they are affected by variables
irrelevant to fairness or civil law.

Finally, the fourth major, although not disjoint, paradigm for gerrymandering detection is the use of
sampling to determine the space of possible districting plans and, based on that, determine whether
a particular plan is skewed relative to the overall distribution. These methods use Markov chain
Monte Carlo (MCMC) sampling, which, as shown by Diaconis in 2009 [10], have been successfully
applied in fields from cryptography to physics. DeFord et al. [1] propose the use of MCMC by
framing redistricting as a graph partition problem. They examine a natural MCMC approach called
Flip, which randomly reassigns nodes one at a time. The paper then forwards the ReCom Markov
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chain family of random walks, which combines two districts and forms a new plan by repartitioning
them. We use the term ReCom to specifically refer to the spanning tree bipartitioning method
of recombination. It is shown that ReCom provides many desirable properties within the real of
redistricting, including the fact that ReCom chains tend to produce more compact partitions.

3 METHODS

3.1 Data

Data was generated using the Julia implementation of GerryChainJulia1, which provided a com-
putational advantage over its Python counterpart. Possible redistrictings of Pennsylvania2 were
computed, because of its real-world value as a battleground state in presidential elections and as one
with gerymandering concerns. Additionally, Pennsylvania provided a moderately sized example,
where its 18 districts were numerous enough to build a robust model while still allowing samples to
be computed in a reasonable amount of time.

The ReCom algorithm was used to generate the training set of redistrictings, referred to as partitions
moving forward. A 10, 000-step ReCom chain was computed, in line with the convergence empirics
of DeFord et al. [1], 100 times each for 7 different initial seed redistricting plans. Every 100th

partition was stored from each run, giving us 7 · 100 · 101 = 70, 700 partitions to use for training
and testing our model. These initial redistricting plans were chosen to be 538GOP, 538DEM,
538CMPCT, three plans from FiveThirtyEight favoring Republicans, Democrats, and Compactness
respectively, CD_2011, the actual congressional districts from the 2011 enacted map, REMEDIAL,
the congressional districts in the 2018 remedial enacted plan, GOV, congressional districts in
the Governor’s 2018 proposal, and TS, the districts in the Turzai-Scarnati plan, proposed by
Pennsylvania House Speaker Mike Turzai and Senate President Pro Tempore Joe Scarnati.

This transformation from a state map to graph, which is required for both the MCMC process and
subsequent graph auto-encoder embedding, is made possible by the fact that district plans rarely
cut through census blocks and precincts, which allows a state’s population to be divided into nodes
with sufficient granularity.

For each partition, the data includes characteristics such as population and demographics at the
node-level, along with high-level characteristics such as the consistent advantage (mean-median
difference) metric and the efficiency gap.

1github.com/mggg/GerryChainJulia
2https://github.com/mggg-states/PA-shapefiles

3

https://github.com/mggg/GerryChainJulia


3.2 Model

Our model consists of a graph auto-encoder (GAE) that extends many properties of variational
graph auto-encoders (VGAE), introduced by Kipf and Welling in 2016 [11]. These are graphical
analogues of variational autoencoders (VAE) [12], which are model frameworks that are used to
generate alterations of existing data. A VAE is thus a model that attempts to learn to encode an
input distribution into a lower dimensional latent space while simultaneously learn to decode from
this latent space to the original distribution. Broadly, this is achieved by having the encoder output
a vector of means µ and standard deviations ln(σ), thus allowing the decoder to learn that a range
of variations in the latent space correspond to a particular sample.

Our model architecture, which is summarized in Figure 5 in the Appendix, is as follows: Given a
particular graph state, the encoder is fed a description of the graph structure, A, and a description of
node features, X . The encoder itself is a graph isomorphism network (GIN) [13], a powerful type
of graph neural network (GNN) which updates the node representations as

xki = hΘ

(1 + ε)xk−1
i +

∑
j∈N (i)

xk−1
j

 (1)

Where hΘ is a neural network, which in our case consists of three linear transformations and two
GELU activation functions, that maps node features from the input to appropriate output shape.
We also experimented with Graph Convlutional Networks [14], defined by

xki = Θ
∑

j∈N (i)∪{i}

eij√
d̂id̂j

xk−1
j (2)

where d̂i = 1 +
∑

j∈N (i) eji. However, we found that the GCN model was harder to optimize.

We also leverage residual connections [15], LayerNorm [16], and dropout [17]. Residual connections
and LayerNorm were crucial in order for the model to train, and dropout helped reduce the gap
between the training and validation loss.

3.3 Training

The model was trained for 15 epochs using AMSGrad [18] with a learning rate of 0.001. The loss
function is a combination of the standard VAE reconstruction loss, the Kullback-Leibler divergence
between the standard normal distribution and the learned distribution, and a discontiguity penalty
term:

L(x) = Ex[log p(x̂)] + λ1 · KL(N (0, I);N (µk, σk)) + λ2 · Lcont(x) (3)
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where Lcont is defined as a sum over the edges in the graph E:

Lcont(x) =
∑

(v1,v2)∈E

L1(log px(v1), log px(v2)) (4)

with log px(v1) ∈ R64 representing the logits vector that node v1 is mapped to by the model. The
intuition behind this penalty is that adjacent nodes are likely to be mapped to similar assignment
distributions in a contiguous assignment. We tried a few combinations of loss hyperparameters,
specifically with λ1 ∈ [ 1

64
, 1

4
] and λ2 ∈ [3, 20]. A plot of the loss curves for a specific selection of

loss hyperparameters is shown in Figure 1.

Figure 1: Training and validation loss curves with λ1 = 1
16 and λ2 = 5.

4 RESULTS

In order to determine whether our model would be useful as a sampling augmentation, we sought to
determine if it exhibited the state-level aggregation into contiguous districts that is expected of a
districting plan. As seen in Figure 2, our baseline model, (b) showed district aggregation in dense
census tracts that was significant relative to a random assignment (a). Moreover, incorporating the
discontiguity penalty at varying levels, which promoted partitioning the graph into more contiguous
districts, resulted in a strict improvement, as shown in (c,d). We believe that further fine-tuning this
penalty, as well as incorporating constraints on population deviation between districts, would result
in improved data generation.

In addition, although our currently generated graphs are inadequate for actual sampling, the GAE
implementation shows significant computation improvements over the ReCom algorithm. As seen
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(a) (b)

(c) (d)

Figure 2: Partitions of Pennsylvania: (a) Random assignment, (b) Base model result, (c, d) Model results with
discontiguity penalty.

in Figure 3, the time to generate redistricting plans using ReCom was linear in the number of plans
generated, with each requiring approximately 6 minutes for Pennsylvania. Our model however, even
when including the fixed time cost of training, is faster than ReCom at around 25 generated maps,
meaning for applications at a real-world level, where the sampling requirement is much larger, we
believe there to still exist a performance advantage to a better augmented GAE approach.

5 DISCUSSION

5.1 Engineering Challenges

We believe that there are three key data and model-level engineering hurdles, which, if addressed,
would improve the performance of our model. First, we note that a major reason why our output
graphs did not show extensive higher-level structuring, such as contiguous districts, is because the
2−layer GIN models used for the encoder and decoder are not deep enough to learn higher order
propagation. This shallow structure inhibits the model from effectively ’communicating’ between
nodes that are far away from each other, and thus leads to small local clusters as opposed to larger
ones. Second, our biggest concern with the initial results was the discontiguity of the output maps,
where district labels were not as clustered as hoped. While our inclusion of the discontiguity penalty
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Figure 3: Time to generate samples for ReCom (6 minutes per sample using GerryChainJulia) and our model (fixed
training cost + ∼0.165 seconds per sample ).

showed effectiveness, as noted in Section 4, we believe a more nuanced application of this loss can
lead to further improvements, since currently, increasing the weighing of this penalty, λ2 eventually
results in a single prediction for all nodes, as shown in Figure 4 below. Finally, the third concern

Figure 4: Result of increasing λ2 arbitrarily, which leads to all nodes being classified into the same district.

was that our model did not preserve permutation-invariance of the labels. District assignments are
fundamentally permutation-invariant, since swapping the labels of districts i and j has no actual
effect on election outcomes. This property was preserved in the data-generation process and we
believe incorporating it into our model would improve clustering performance.

5.2 Future Directions

There are multiple avenues of exploration that we believe would improve our sampling performance.
The first is on the model front, where the size of our GIN encoder and decoder were limited by
compute constraints on personal hardware. As noted above, increasing the depth of these models
should lead to a higher level of dependence between distant nodes. On the same front, we are
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currently implementing a virtual node into our graph network, as studied in Pham et al. [19], which
is an abstract node with connections to all nodes in the graph. This thus decreases the distance
between nodes in the network and allows for a more complex sample space to be studied. Finally,
adding population-level constraints should implicitly help aggregation of nodes into contiguous
districts. Thus, one can directly add a penalty for deviating from a district population mean, which
leads districts to be of similar population and may improve clustering behavior.
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6 APPENDIX

Figure 5: Graphical depiction of the GAE model.
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