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ABSTRACT

Expanding on the core literature of single-idea propagation, Sun et al. [1] and Zhang et al. [2] explore
competing information diffusion in social networks. In this work, we extend [1] to create a model for
network propagation with two parties and explore its dynamics under different conditions. We find
that in the Facebook ego dataset, it is possible to determine the relative value of the node of highest
degree, vmax, with respect to a set of random nodes in the graph. Moreover, we show the impact of
distance to vmax on information spread and illustrate a strategy to suppress information. Finally, we
consider two strategies within the budget-constrained model and show the effectiveness of seeding a
large number of nodes with low degree distributed over the graph instead of picking fewer nodes with
high degree.

1 INTRODUCTION

Social networks, which are composed of the interpersonal relationships within a group of individuals,
play a crucial role in the spread of information. Often, people are influenced by others in their
adoption of a novel idea—whether it’s a new smartphone or a medical advancement—and the study
of the network processes which are critical in these interactions has been a growing part of the
social sciences literature [3].

Specifically, an important avenue of research in the field concerns ways of maximizing this spread of
information within a social network. Empirically, these studies have focused on issues ranging from
optimal viral marketing plans for brand awareness [4] to the diffusion of agricultural technologies
in developing countries [5].

Much of the research in this area revolves around information diffusion through optimally informing
agents, where the focus is on transmission of a single idea. However, many real-world instances of
marketing and information-spread tend to involve multiple competing parties—such as clothing
manufacturers trying to sell a shoe or Samsung and Apple vying for market share. In this paper, we
thus explore the network dynamics and optimal seeding strategies in the presence of two competing
agents. We focus on a specific information propagation model, discussed in Section 3, and utilize
properties of the underlying graph to inform our heuristics. We then investigate the impact of



constraining these strategies, such as through budget limitations, and provide insight into methods
of suppressing information as well.

The paper is organized as follows: Section 2 presents a review of current literature relevant to the
work. This is followed by a description of our model in Section 3 and important results in Section 4.
We conclude and present future directions for our model in Section 5.

2 RELATED LITERATURE

Work by Kempe et al. in 2003 [6] showed that it is computationally unfeasible to identify individuals
who are best able to maximize information diffusion in a network. Their work, in addition to noting
that the problem of selecting the most influential nodes in a network is an NP-hard, also explored the
performance guarantees of approximation and natural greedy heuristics for this problem [7]. Due to
the aforementioned intractability, many papers are focused on utilizing network characteristics that
are related to influence, such as eigenvector centrality and degree centrality [8]. Although these
characteristics are useful for the information diffusion problem, determining the values within real
networks is costly, as shown by Breza et al. [9], who developed methods to determine network
structures without needing full information.

As mentioned in the introduction, work by Domingos and Richardson [4] investigated how to best
utilize viral marketing within a network. Here, advertisers prioritize individuals who have the most
influence in order to potentially trigger a cascade that leads many people to try the product without
the high costs of direct marketing to each person. The paper works in the paradigm where the joint
distribution over all nodes’ actions is specified and presents presents heuristics for identifying nodes
with a large influence on the network.

Work by Morris in 2000 [10] focused on analyzing general local interaction systems, where there
are an infinite number of players who interact with their neighbours and can choose a binary option
to play. In this framework, Morris characterized the conditions under which contagion—when a
behaviour spreads to the entire population—occurs.

In our paper, we choose a modification of a specific propagation method: the SIR model [11],
which is an epidemic model that subdivides a population into different compartments based on their
"infection" by an idea and simulates dynamics as members move through the various compartments.
This is similar to the framework utilized by Akbarpour et al. [12], who explored the impact of
seeding in information diffusion and showed that the strategy of randomly seeding s+ x individuals
can lead to greater diffusion than choosing the optimal s.

A paper that works in a similar paradigm to our model is that by Sun et al. [1], which explored
competing information diffusion in social networks and the resulting dynamics. Their research
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focused on the influence of different information spreading probabilities, changing densities of
’seed’ nodes, and different network structures.

Finally, a paper by Zhang et al. from 2013 [2], also considered a competitive maximization problem
with the goal of choosing seed nodes to increase information spread. In their model, nodes had
preferences that were explicitly determined by a probability distribution, which then determined the
information to be adopted. The main result was a heuristic algorithm based on a random walk on
the network, where the most influential nodes were identified by tracing information back based on
the random walk to find probable origins.

3 MODEL

3.1 Information Propagation

We will follow the framework presented in Sun et al. [1], which resembles a modified SIR model.

Specifically, the model consists of a graph G = (V,E) and two sets of information, A and B. The
graph has some initial "seed" nodes, with states SA, SB , which diffuse information A,B respectively
to their neighbours. The remaining nodes are in an ignorant state I , where they do not know any
information. The final set of nodes are "recovered," meaning they can no longer spread information,
but are not ignorant. These are RA, nodes which know A but not B, RB, which know B but not A,
and RAB, which know A and B. The end of the diffusion process is when there are no spreading
nodes in states SA, SB, meaning all nodes will be one of {I, RA, RB, RAB}.

The diffusion process, illustrated graphically in figure 1, occurs as follows:

• At every time step, each person in state SA either informs their neighbours about A with
probability pA or decides to stop transmitting information (and thus enters state RA) with
probability qA. The analogous quantities for information B are pB, qB. We note that the
transition between spreading and recovery states reflects the notion that people tend to not
share news they believe to be "old."

• If a node in state I is exposed to both A,B simultaneously, then it randomly accepts either
state with probability 1

2
.

• If a node is in the spreading state of SA, SB then they are unaffected by others’ information.

• Finally, if a node in recovered state RA is exposed to information B then they transition to
state RAB with probability rA. The analogous probability for the RB → RAB transition is
rB.

The model omits direct transitions I → RA, RB and SA, SB → RAB from the Sun et al. [1]
paradigm.
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Figure 1: Possible state transitions and their probabilities given the conditions in Section 3.1

3.2 Budget Constraints

In addition, we consider the situation where the competing agents, whose goal is to maximize the
spread of either A or B in the network, work with a constrained amount of seed nodes. Specifically,
we implement a cost to creating a seed node and have agents operate with a limited budget. We
assume that the cost to make v ∈ V a seed node is equal to its degree, deg(v). This reflects the
real-world situation where agents are looking to "sponsor" nodes to propagate information and more
popular nodes are more costly to use as advertisers.

3.3 Experimental Setup

Unless stated otherwise, experiments are run on the Facebook-ego graph dataset [13] [14], which
is hand-labeled data that consists of Facebook friends lists. This is an undirected graph, due to
the nature of Facebook friendship, with 4, 039 nodes, corresponding to users, and 88, 234 edges, a
visual representation of which is Figure 2. The node degrees in the Facebook-ego graph follow a
power law, instead of being regular. In particular, there is a node vmax with degree 1, 045.

The transition probabilities are fixed as well, unless indicated otherwise:pA, pBqA, qB

rA, rB

 =

 0.2, 0.2

0.1, 0.1

0.05, 0.05


Let the number of nodes be N = 4039. At t = 0, some number of seed nodes SA(0), SB(0) are
initialized based on each experiment condition. There are no nodes in the resting state: RA(0) =

RB(0) = RAB(0). All remaining nodes are in the ignorant state: I(0) = N − SA(0)− SB(0).
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Figure 2: Visual representation of the Facebook-ego graph. Edge lengths are arbitrary.

4 RESULTS

Each simulation consists of 20 runs, from which the data is then aggregated. Each run spans 40
timesteps, which is enough to ensure convergence for all scenarios. At the end of each simulation,
the overall winner between A,B is determined by whichever of RA

N
or RB

N
is larger.

4.1 Vmax vs Random Seeding

A was given a single seed at vmax and B had k randomly chosen seeds for k ∈ [5, 20]. We found
that for k < 9, A was the winner while for k > 9, B was the winner. The results are shown in
Figure 3 for k ∈ [6, 12], where the data indicates a stark difference in the RA

N
and RB

N
values between

the k = [6, 8] and k = [10, 12] groups. Figure 3 (d-f) also illustrates that the graph had reached a
steady state, with the fraction of nodes in the I, SA, SB states at less than 1%.

The RA

N
and RB

N
values converged to within 0.001, meaning the final RA, RB amounts differed by

at most 4 nodes, for k = 9 and this case was further analyzed for 100 runs. This is illustrated in
Figure 4, where we see that having 9 random seeds is approximately equivalent to having one seed
at vmax. These results show that it is possible, in the Facebook ego dataset, to quantify the value of
a node’s information propagation abilities with respect to any set of random nodes in the graph.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Fraction of nodes in each state at a given timestep for vmax vs random seeding, with standard error.
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(a) (b)

Figure 4: Fraction of nodes in RA and RB for vmax vs 9-random seeds and 20, 100 runs, with standard error.

4.2 Single Seed Start

Both A and B were given a single, randomly chosen seed node in the graph. In addition to the
above diffusion metrics, each seed node’s distance from vmax, denoted DA, DB , was also computed.
There were two key findings:

• If DA = DB, meaning the two seed nodes were at the same distance from vmax, then the
winning party was determined entirely by whichever node had higher degree.

• If DA 6= DB, then the node with the shorter path to vmax won consistently, even if it had
smaller degree.

The second result is illustrated in Figure 5, where the runs were separated into those where seed A

was closer to vmax and where B was closer. In each case, there was a divide in the final RA, RB

curves where RA > RB if DA < DB and vice versa. Moreover, across experiments where the
starting distances (DA, DB) were the same, it was found that the magnitude of the final RA, RB

values increased with increasing degrees of the seed nodes, while still following the trend of the
second result above.

4.3 Vmax vs Strategic Seeding

A was given a single seed at vmax and B was allocated three seeds at the second, third, and fourth
highest-degree neighbors of vmax. Denote the neighbours as v1, v2, v3 respectively. In the Facebook
ego graph, these nodes had degrees deg(v1) = 349, deg(v2) = 347, deg(v3) = 254. The results
are shown in Figure 6, where, over all runs, the average end-state of information propagation had
RB > RA.
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(a) (b)

Figure 5: RA, RB curves for randomized single-seed experiment. Separated into (a) DA > DB and (b) DB > DA.

Figure 6: Percent area plot of node states in the vmax vs strategic seeding experiment.

4.4 Budget Constraints

Each node v ∈ V was given cost equal to its degree deg(v) and each experiment consisted of
multiple runs at a given budget B. Agents followed one of two strategies in selecting seed nodes:

• High: Agents greedily selected nH ∈ [3, 6] nodes vi such that for each node deg(vi) ∼ B
nH

.

• Low: Agents greedily selected nL ∈ [20, 50] nodes vi such that for each node deg(vi) ∼ B
nL

.

To determine reasonable budgets, the degree distribution of the graph, shown in Figure 7, was
calculated. The sum of all degrees was 176, 468 and the average degree was 43.69.
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Figure 7: Distribution of node degrees; x-axis runs through all nodes.

Experiments were run for B = 200k, k ∈ [1, 10]. A was seeded according to High and B was
seeded according to Low. It was found that for each budget B, the number of nodes in state RB was
larger than the number of nodes in state RA, meaning adopting Low was an advantageous strategy.
Figure 8 illustrates the RA

N
and RB

N
curves for several combinations (B, nH , nL).

Figure 8: Runs are labeled R1 = (2000, 3, 50), R2 = (2000, 6, 50), R3 = (1400, 5, 40), R4 = (1000, 4, 20), R5 =
(600, 6, 30), with solid lines for RA and dashed lines for RB .

5 DISCUSSION AND FUTURE WORK

In this paper, we proposed a model of network diffusion in the presence of two competing parties
and looked at the effect of different seeding strategies on information propagation in the Facebook
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ego graph. We showed in Section 4.1 that in the dataset, in expectation the propagation effect
of vmax was equivalent to that of 9 random nodes. This method provides a method by which the
relative value of a node can be determined with respect to the average node in the graph. Future
experimental work in this area should determine whether, for different graph structures and node
degree distributions, an exact equivalence still holds. Theoretically, working within the framework
of Sun et al. [1] and Zhang et al. [2], future work would entail considering more regular graph
structures in order to find provable bounds on the existence of such a knife-edge property.

In Section 4.2, we showed that the impact of a single seed depended most on its distance from vmax.
However, is is unclear how large of a role the degree distribution, as seen in Figure 7, plays in this
result. Specifically, an extension should look at graphs without extreme outliers in order to see
whether this effect still exists and its relative importance compared to seed node degree.

Finally, Sections 4.3 and 4.4 showed results that could be useful in real-world marketing applications.
Specifically, 4.3 illustrated the efficacy of choosing nodes around the opposition’s seed(s), even
when the total degree of the surrounding nodes is less than the opposition degree. 4.4 then indicates
that at a given budget, it is better to pick many nodes distributed over the graph with low degree
instead of picking fewer nodes with high degree. This section provides the most avenues for future
work. The High and Low strategies were relatively unsophisticated and could be improved to
provide better diffusion results. It would also be informative to train a model that choose the best
nodes for a given budget, although this is unfeasible in the real-world, in order to get a baseline
for relative effectiveness. Moreover, defining a node’s cost as its degree is a strong assumption and
different heuristics should be explored, including other measures of centrality. Finally, the results
ignore the outside factors that may make Low a worse strategy, including the cost of actually finding
and partnering with many smaller agents as opposed to more established, central agents and the
"trust" placed in smaller agents. The second point in particular could be addressed by augmenting
the model to give each node a propagation factor proportional to its degree.
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