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1 Introduction

With increasing reliance on automated systems which make data-driven classifications, there are growing concerns in
the potential that such systems learn prior unjustified prejudices and further such biases in continued classification. In
this work, we will study the applicability of post-processing classification algorithms to promote fairness with respect
to how the algorithm classifies certain demographics or similar individuals. A common fairness measure used is group
fairness, otherwise known as statistical parity, which enforces the condition that the expected classification of members
within a protected group match the overall population classification. However, in providing only a constraint over
what is potentially a broad sweep of individuals, enforcing group fairness may still yield unfair outcomes; for instance,
Dwork et al. (2011) outlined the concept of a self-fulfilling prophecy, wherein unqualified members within the protected
group are accepted with expectations that they will fail to justify the prior bias against the group. As such, Dwork et al.
(2011) proposed instead the notion of individual fairness, wherein fairness is achieved if individuals deemed similar to
each other are classified similarly. We will aim to examine the relationship between both group and individual fairness
and specifically attempt to enforce individual fairness, which is the stricter of the two constraints.

Kim et al. (2018) proposed the notion of post-processing a classification algorithm, which is particularly useful in
our current society as many algorithms have already been implemented without prior checks for fairness, and thus
would benefit from the addition of such a technique. The post-processing involves a switching subgradient descent
(SSGD) which adjusts the predictive weights primarily for any fairness violations within a subset of the population and
secondarily moves along the objective function to balance fairness and accuracy. Their theoretical results proved that
metric multifairness, a relaxation of individual fairness which focuses on fairness within smaller collections of similar
individuals, can be achieved while only sampling a fraction of the original data. However, the convergence specified by
the algorithm in Kim et al. (2018) is quite large, being quadratic in the number of samples. Further, it is not immediately
clear what the smaller collections of similar individuals should be to ensure more intersectional notions of fairness.

To that end, we aimed to investigate the implications of the SSGD algorithm on the Jigsaw Unintended Bias in Toxicity
Classification dataset. The dataset was created following the publication of several queries of the 2017 Perspectives API,
which identified “I am a man” as being 20% likely to be toxic, “I am a woman” as 41% likely to be toxic, and “I am a
black man” as 85% likely to be toxic. This disparity in toxicity probabilities for very similar sentences seems to indicate
a strong bias against certain identity labels; since the Perspectives API was meant to automatically hide comments
deemed toxic, this represented a distinct harm to certain demographics in being unfairly censored. To combat this, the
dataset published includes comments, tags for any identity labels contained within the comments, and the probability of
toxicity as assigned by several impartial arbiters, with the aim of maintaining comment toxicity classification accuracy



while also allowing for tracking of the accuracy for certain demographics. Thus, it is ideal for our use-case to attempt
fair classification between various identity labels and the overall population. We will specifically only examine the [].

Thus, our motivations were to first verify the validity of the similarity and individual fairness metrics we specify, and
use them to examine the viability of SSGD in augmenting the fairness of text toxicity classification, and using the
fairness and accuracy shifts over the course of post-processing to visualize the rate of convergence for various subset
designations. Further, we would also like to examine whether the metric multi-fairness constraint in Kim et al. (2018)
generalizes to increasing both individual fairness and group fairness.

2 Methods

Figure 1: Frequency of Annotated Identity Labels over Entire Toxicity Dataset.

First, we trimmed our dataset to only contain identity labels for whether the comment text mentioned a definitive gender,
race, or sexual orientation, leaving 10 label tags which we will treat as the protected groups within this dataset. We
also culled any metadata regarding temporal or regional IDs, as they were inconsistent in placement and existence
between comments. We only included annotated comments, those checked explicitly for identity labels by multiple
third parties, to ensure there was a minimized chance for lack of identification of the inclusion of a protected group
within the comment text. We then sampled 25% of these points to yield a dataset X with |X| = 180487 data points. To
ensure we had enough labeled samples to be statistically relevant, we focused on the comments containing "male" and
the comments containing "female" identity labels as gender was the most common identity mentioned per Figure 1.

Our similarity metric was derived from cosine similarity of the average word embedding of the comment text, which is
commonly performed as a measure of sentence similarity in natural language processing. The word embeddings were
taken from the GloVe-100 dataset, which yields 100-dimensional vectors for words as found within Wikipedia text. In
addition to the average word embedding, we added 0-1 classifiers for whether an identity label was included or not for
110-dimensional embeddings overall. We then performed a normalization of each embedding, with the similarity metric
being the Euclidean distance, since the Euclidean distance of normalized vectors gives the same relative measure as the
cosine similarity distance.

For our individual fairness metric, we used the Zemel et al. (2013) consistency metric I , which defines fairness for
some data point xn ∈ X , |X| = N , as the discrepancy between its predicted value ŷn and the predicted values for its
k-nearest neighbors, kNN(xn), based on the similarity metric given:

I = 1− 1

Nk

∑
xn∈X

∣∣∣∣∣∣ŷn −
∑

xj∈kNN(xn)

ŷj

∣∣∣∣∣∣
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This measure thus provides a sense of whether the comments most similar to each other are similarly classified. Here, a
larger I value would indicate more similar judgements between similar individuals, and thus higher individual fairness.

We further used the Zemel et al. (2013) discrimination metric DS as a proxy for measuring group fairness:

DS =

∣∣∣∣∣
∑

xi∈S ŷi

|S|
−
∑

xj∈Sc ŷj

|Sc|

∣∣∣∣∣
where S is the set of datapoints which contain the sensitive feature, thus showing the average discrepancy between
points containing the feature and not. Here, a smaller DS value would indicate less discrimination, and thus higher
group fairness.

Our base model which took as input the comment text and outputted the toxicity probability. This structure emulates
the basic architecture used in the traditional natural language processing classification models. We also examined an
augmented model which predicts toxicity probability and 0-1 values for the 10 identity markers. This data augmentation,
as described in Nguyen et al. (2011), is a common technique which has been shown to increase classification accuracy
significantly. Both models consist of an embedding layer and 50 LSTM units with 0.2 dropout and sigmoid activation,
used the Adam optimizer, and ran for 3 epochs with batch sizes of 128.

In postprocessing, the SSGD algorithm will shift the LSTM layer weights w0 primarily on the gradient of any violated
fairness constraints and secondarily on the usual objective function. The estimated residual query for a given subset
S ( X , R̂S(w), gives a ballpark figure for

E(xi,xj)∈S×S [ŷi − ŷj ]− E(xi,xj)∈S×S [d(xi, xj)],

where d(xi, xj) is the similarity distance of the comment text as defined earlier; this measure thus notes how different
the prediction values are from the perceived similarity of the comments. The estimate is done by only computing the
pair predictive difference and distances for the values in S which were picked from a general sampling of X . We will
use a tolerance of τ = 0.05 and T = 100, 000 total steps. Every 100 steps, group fairness was calculated for the set
containing all "men"-labeled comments, M , and the set containing all "women"-labeled comments, W , as well as the
individual fairness metric I .

SSGD(w0, τ, T, C){
for(k = 0; k < T; k + +){

if (∃S ∈ C such that R̂S(wk) > 4τ/5) { \\ fairness violation detected
Sk ← any S ∈ C such that R̂S(wk) > 4τ/5; \\ pick a subset on which fairness was violated
wk+1 ← wk − τ

M2∇RSk (wk); \\ step per fairness gradient on the subset
}
else{ \\ fair weights found

W ← W ∪ {wk}; \\ add to set of known fair weights
wk+1 ← wk − τ

GM
∇L(wk); \\ step per objective gradient

}
}
return w̄ = 1

|W |
∑
w∈W w \\ output average of fair weights

}

We noted that there is significant computation involved in the number of metric samples specified by Kim et al.(2018)
for convergence of SSGD, on the order of |X|2 ≈ 1010 per step. To test whether this could be reasonably minimized,
we also performed an altered switching subgradient descent, SSGD’, which used an estimation technique for R̂S(wk)

which, instead of considering a flat number of pairs, sampled 100 of the points within the subset and found the
residual for those points. This clearly adds additional uncertainty to the computed potential unfairness, but is far less
computationally expensive to compute.
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We considered several sets of subsets of X , which we label C, to examine the impact of distance of points within each
subset, the perceived importance of using identity labels to create the subsets, and the impact of containing overlapping
sets. For our first collection C1, we identified three basic disjoint sets: comments which included "men", comments
which included "women", and comments which included neither. For the second collection, C2, we considered a similar
design, except within each segment ("men", "women", and neither-labeled), we created 3 further strict subsets using a
clustering algorithm within each segment for 12 subsets total. Finally, for C3, we created 12 clusters over the dataset
such that all attempted to minimize distance such that there was overlap between clusters.

3 Results

One of the critical limitations of individual fairness is the lack of specificity within designations for a similarity metric
between data points. There has not been a generalizable claim as to what metrics can be considered fair in judging the
level of similarity of individuals. Thus, we preliminarily evaluated the effectiveness of our similarity metric on a series
of simple sentences containing a pronoun (“I” or “You”) and identity labels.

The resulting similarity metrics rated "I am" statements much closer than "You are" statements, and vice versa, and
rated inclusions of similar gender, race, or sexual orientation as making statements more similar, with penalties for
opposite gender, race, or sexual orientation. This is desirable, as it shows acknowledgement of various axes of identities
while also analyzing overall sentence structure similarity. Without label inclusions, the distance for the inclusion of
labels was clustered by identity type (gender, race, or sexual orientation), further noting a general similarity in treatment
for each label grouping.

Table 1: Base Model and Augmented Model Metrics
Model Type Accuracy DM DW I

Base 90.43% 0.0519 0.0827 0.5434
Augmented 94.03% 0.0514 0.0834 0.5585

Using this similarity metric, we found the k-nearest neighbors for each comment in X . This took a large amount
of computational effort, with the algorithm running for nearly 2 days. In Table 1, we see the model accuracies, the
discrimination with respect to the set of "men"-labeled comments, M , and the set of "women"-labeled comments, W ,
as well as the consistency as found with k = 15. As expected, the augmented model is more accurate than the base
model Examination of this reveals that generally, the comments containing "men" has a lower discrimination value
than comments containing "women", indicating that W as a set experiences more group unfairness and implying the
results are generally more discrepant for "women"-labeled comments. Interestingly, we also note that the augmented
model has a wider gap between DM and DW but a slightly higher individual fairness metric. Predicting identity labels
in our augmented model necessarily emphasizes the importance of identity labels, and thus may have augmented the
distinguishment between . To attempt to improve upon the best model we had, we proceeded to perform post-processing
on the augmented model so as to determine the best level of individual and group fairness we could achieve using our
framework.

Examining the impact of post-processing generally, as shown in Figure 2, we found that the SSGD’ algorithm is much
more volatile in terms of its output relative to all measures, and especially with regards to accuracy; this implies it is
much more volatile about whether any fairness violation is found, and the gradient in the case where a violation is found,
which makes sense given the smaller sample size. However, even the traditional SSGD algorithm performed several
jumps in discrimination and consistency values, which may suggest our sampling was too small for that algorithm as
well. However, we note that while accuracy decreased for all post-processed algorithms, all also had at least marginal
improvements in terms of improved consistency and lessened discrimination, indicating improvements in both group
fairness and individual fairness as a result of this post-processing. It also seems that generally DM was more volatile
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than DW , indicating it was likely the sets containing more "men"-labeled comments which violated more fairness
constraints; we are not entirely sure as to the reasoning, but we do note that there are significantly fewer "men"-labeled
comments generally, which may mean it is easier to violate fairness constraints due to decreased sampling. We also
note a generally positive trend between increasing group fairness and increasing individual fairness.

Further, the SSGD and SSGD’ algorithms showed very distinct results based on which of the three collections was
used. The algorithms using C1 yielded little to no results, which makes sense as disjoint sets do not give much holistic
information and further were likely too large to be useful with regards to violating fairness constraints. The algorithms
using C2 slightly decreased discrimination and increased consistency, which indicates that the notion of intersecting, or
even nested, subsets are useful in improving fairness constraints. The algorithms using C3 were by far the most visibly
successful at helping the algorithm improve both individual and group fairness bounds, despite not being explicitly
based on the metric of gender. This seems to indicate that the best way to create the collection of sets is to minimize
distance, rather than explicitly account for disjoint sets of the features upon which we would like to improve fairness.

(a) Model Accuracy using SSGD or SSGD’. (b) Model DM using SSGD or SSGD’.

(c) Model DW using SSGD or SSGD’. (d) Model Consistency (I) using SSGD or SSGD’.

Figure 2: Model accuracy, discrimination, and consistency metrics based on varying post-processing techniques and sets considered.

While the SSGD algorithm was much less volatile compared to the SSGD’ algorithm, it also took far longer to run; all
SSGD algorithms took over a day for 200,000 steps, and the algorithm using the C3 collection took over three, and this
large computation prevented us from finding any convergence within the fairness contraints or accuracy. Meanwhile, the
SSGD’ algorithm took at most 8 hours for 200,000 steps regardless of the collection used, which makes it a potential to
explore further with regards to whether it can converge given more steps.

Finally, we examined the consistency of the 2017 Perspectives model, our base model, and the post-processed models
based on the C3 collection based on the queries given to the 2017 Perspectives API, as listed in Table 2. We have
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found a large improvement between the 2017 model and our base model, with another slight improvement between
our base and augmented model. The largest increase is between the augmented model and the SSGD-postprocessed
models, which performed similarly. However, we note that since these were very simple sentences where the only
differences were the inclusion of varying identity labels that there is still much progress to be made, as an algorithm
should distinctly be capable of obtaining near 100% consistency with respect to this simple set of queries.

Table 2: Consistency over 2017 Queries
Model Type Consistency, k = 4

2017 Perspectives 52.44%
Base 68.35%
Augmented 70.75%
Augmented-SSGD (C3) 75.75%
Augmented-SSGD’ (C3) 78.5%

4 Discussion

We verified the effectiveness of using our defined similarity and distance metrics for use in determining individual
fairness, and showed the viability of using the post-processing SSGD algorithm proposed by Kim et al. (2018)
in enforcing a proxy for individual and group fairness on the task of text classification with sensitive labels. The
major obstacle we encountered was the large computational burden of calculating the k-nearest neighbors for the
individual fairness consistency metric, and the large amount of pair prediction differences needed for each step of
the post-processing residual estimates. Further, it is still unclear from our findings how to efficiently determine an
appropriate collection of subsets for the dataset. Our C3 collection took several hours to compute, and given our general
finding that more robust collections are better for enforcing fairness constraints, creating an efficient algorithm to find
such collections would be useful for furthering the applicability of this metric multi-fairness enforcing post-processing
technique.

Other areas for further research include examining other metrics for text similarity; a fundamental assumption in our
use-case was that the GloVe word embeddings are not overly biased and have similar semantic embedding to the word
use-cases in our dataset. To make this more generalizable, it may be useful to include within the model a BART custom
word embedding model, and to try to make that a fair representation using Naive Bayes as performed in Zemel et al.
(2013). Orthogonally, one could also explore using counterfactual models of fairness to create a more interpretable
schema for determining the current fairness of an algorithm, and perhaps use SSGD to find the impact of fairness in this
framework.
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