
ITERATIVE SKYLINE COMPUTATION THROUGH NOISY

COMPARISONS

Abishrant Panday
abishrantpanday@college.harvard.edu

Joyce Tian
joycetian@college.harvard.edu

December 10, 2019

1 Introduction

Given a set of points S in Rd, the skyline is defined as the subset K ⊆ S such that no point in K is Pareto-dominated
by any point in S and that all points in K Pareto-dominate all points in S \ K. Here, we define a point p as
Pareto-dominating a point q if, for all dimensions i ∈ [d], each coordinate satisfies qi ≤ pi.

Figure 1: Example of a set of dimension 2 from [2] where the skyline points can be seen to dominate all points
coordinatewise.

Given exact data, the problem of computing the skyline reduces to one of finding the vectors in S which are maximal.
We, however, chose to study the question of skyline computation when the underlying data is uncertain: specifically,
when two points p, q in S can only be compared through noisy coordinate-wise comparisons. Within this paradigm,
we construct a comparison oracle, which we assume knows the base truth of each comparison but outputs incorrect
answers with some probability δ < 1

2 . Thus, given queries between the ith coordinates of two points, the oracle will
determine the strict ordering qi < pi and then return a correct outcome for each query independently with probability δ.

Our project thus provides a synthesis of two recent theoretical papers with respect to their contributions on iteratively
computing noisy skylines: "Skyline Queries with Noisy Comparisons" by Groz, Milo [1] and "Skyline Computation
with Noisy Comparisons" by Mallmann-Trenn, Mathieu, Verdugo [2]. We then contribute to the theory of skyline



computation by showing the limitations of a proof in [2] and using those insights for improved implementation. To
compare, we implement three algorithms: SkylineHighDim, Skysample, both implemented using the framework of
SkylineComputation, along with a brute-force control algorithm. We add implementation-level improvements, modify
the algorithms for real-world convergence, and stress-test on generated data. The implementation can be found at:

https://github.com/Saffr0n1/Iterative-Noisy-Skyline-Comparisons.

Section 2 provides preliminary definitions, section 3 gives motivations and a simplified model, and section 4 references
predecessor noisy comparison models. Section 5 provides the theoretical foundations of iterative algorithms for noisy
skyline and within it, Theorem VI in section 5.3.2 provides theoretical contribution with an implementation focus.
Finally, section 6 consists of original implementation and model testing, along with results and their interpretations.

2 Preliminary Definitions

We first present the definitions that are used in the theoretical and algorithmic discussion of all subsequent models:
Sample Set: The sample set, X , is the set of all points, for which we wish to return the skyline. For ease of reference,
we will denote |X| = n.
Dimension: The dimension, d is defined by the fact that X is a subset of Rd; d is the number of attributes |v| of any
point v ∈ X , and can be thought of as the number of relevant categories we wish to examine rankings on.
Skyline Cardinality: The cardinality k of the skyline, which is the unknown number of points that comprise the
skyline K ⊆ X .
Error Tolerance: The error tolerance, δ, represents the maximum error of our algorithm to return the correct skyline.
Preference: We define the actual preference ranking between a, b ∈ X on dimension i as a ≺i b if a[i] < b[i], a ∼i b
if a[i] = b[i], and a �i b if a[i] > b[i]. A soft preference ranking like a �i b implies a[i] ≤ b[i], and similarly with
a �i b.
Comparison Oracle Error Tolerance: The error tolerance, p < 1

2 , represents the maximum error of an oracle
comparison’s response to a boolean query. We will specifically query oracles in the form x �i y for x, y ∈ X ,
1 ≤ i ≤ d. We will assume a stricter bound p < 1

6 such that the bounds for some proofs hold easily.
Pareto Dominance: A point v is considered Pareto dominant over another point v′ if it satisfies v′ �i v for all
1 ≤ i ≤ d; v is strictly Pareto dominant over v′ if it satisfies v′ �i v for at least one i value.
Pareto Frontier: The Pareto frontier, or skyline, is the set of points C ⊆ X such that all c ∈ C are Pareto dominant
over all x ∈ X \ C and for all pairs of points c ∈ C, x ∈ X , x is not Pareto-dominant over c.

In addition, we define and motivate the following analysis-specific parameters:

# Rounds: The number of rounds are the number of times comparisons must be executed and processed in
parallel. The motivation for examining this metric is to ascertain the value of using a given algorithm in crowdsourcing
scenarios; the batching of questions in these models provides some measure on the time required to complete the
scenario in real-world.
Oracle Complexity: The oracle complexity of an algorithm is a measure of the number of calls to the oracle that
are required within the computation. In our noisy skyline setup, which can be used to model scenarios such as
crowdsourcing information, it is assumed that each call to the oracle has a cost, which is usually monetary in tools such
as Amazon Mechanical Turk, which globally exports many user-classification tasks. Thus, we will look to minimize the
oracle complexity while retaining a high probability of returning the correct skyline.
Computational Complexity: The computational complexity is our traditional measure of an algorithm’s processing
time with respect to the parameters it utilizes. The computational complexity generally determines an upper bound for
oracle complexity as well.

2

https://github.com/Saffr0n1/Iterative-Noisy-Skyline-Comparisons


3 Motivation

In general, the problem of determining a skyline given a set of points is motivated by the fact that points in the skyline
can be used to determine the "best"—based on some measure of comparing values at each coordinate–items within the
set over many dimensions. As an example, if we are considering the problem of ranking different universities, we might
consider the dimensions of student happiness, endowment, faculty size, and future student income. The skyline over
these dimensions will then give a measure of how these universities compare to each other on the basis of these factors.

3.1 Noiseless Skyline Model

The first model of the general skyline problem thus consists of the noiseless skyline, where we have a set of points
S ∈ Rd and can compare any two p, q ∈ S by querying an oracle that is always correct. If we define |S| = n, |K| = k,
we propose the following naïve algorithm with computational complexity O(knd), which we will use as a model for
more complex noisy algorithms:

• Define Si as the set of i greatest skyline points in lexicographic order and Ri as the set of points not dominated
by Si

• Note then that S0 = {} and R0 = S, the whole set.

• for i ∈ {0, 1, . . . , k} :

• Take the largest r ∈ Ri based on lexicographic order, which has computational complexity O(dn). Construct
Si+1 = Si + {r}. To construct Ri+1, iterate through R and remove all items dominated by r, also in O(dn)

time.

3.2 Adding Noise to Model Real Data

By adding noise to the queries, the noisy skyline model reflects scenarios where the comparison of attributes between
different items is not deterministic or simple. In particular, this paradigm models an important source of data labeling and
categorization in large-scale analysis: crowdsourcing. This scenario thus motivates the definition of a non-deterministic
oracle, due to the addition of uncertainty in the way a general crowd can compare any two features, and also highlights
the importance of oracle complexity, defined above, since obtaining the correct answer to a comparison often re-
quires multiple people’s answers—and querying the crowd is generally of higher cost than computational considerations.

Furthermore, we find many applications of such crowdsourcing within fields like machine learning, which require large,
accurately-labeled datasets. As an explicit example, one can consider the creation of the ImageNet database–a large
image database constructed on the WordNet synset structure [5]. The paper, which utilizes Amazon Mechanical Turk,
combats the problem of user uncertainty by presampling some examples from each category and using their labels to
generate a confidence table that can then be referenced. These user labeling tasks can be reformulated in our notion of
binary oracle queries in a labeling-with-options manner. Thus, computation of skylines with noisy comparisons, which
seeks to minimize the oracle complexity, may prove useful in such tasks, since querying the oracle comes with financial
cost.

4 Basic Noisy Comparisons

Before determining the theoretical bounds for noisy skyline models, we introduce other operators which have previously
been studied and their complexity bounds as determined in [3]. However, we first note a naïve algorithm for noisy
comparisons:

3



Let algorithm A return the skyline in a noiseless setting with computational complexity f(n). Then, for an error
tolerance δ, we can construct an algorithm A′ in the noisy case by calling each comparison in A log

(
f(n)
δ

)
times. The

majority vote is then used for the decision. Thus, each noiseless comparison is now represented by a comparison that
has tolerance δ

f(n) . By the union bound we thus get an overall error of δ for the converted algorithm A′. For the specific
problems below, we provide better bounds.

We consider the following noisy comparison problems and their computational complexity bounds, as determined in
[3]:

• OR: Given n Boolean inputs, we decide if one of them is true. Θ(n log 1
δ )

• MAX: Given n items, we return the largest one. Θ(n log 1
δ )

• SORT: Given n items, we return their sorted order. Θ(nlog nδ )

• BINARY SEARCH: Given an ordered list S with n items and an item v, we return the successor of v in S.
Θ(log nδ )

5 Theoretical Discussion of Skyline Computation

In order to motivate our implementation-level heuristics, experimental bounds, and implementation improvements, along
with a divergence between theoretical and empirical findings, we first discuss the theory of two skyline computation
algorithms presented in the papers.

5.1 Dominance Testing

Before we consider the actual algorithms, we prove bounds for the oracle complexity of dominance testing.

Theorem I Let C ⊆ X and choose a point p ∈ X . We can check that p � C with error probability δ in oracle
complexity O(d|C| log 1

δ ).

Proof We will derive this complexity by considering dominance tests as compositions of OR queries and then utilize
the bounds from section 4. In particular, given q ∈ C, we can define the dominance test between p, q by:

p � q =

d∧
i=1

pi ≤ qi (1)

We then utilize the OR algorithm to check each test in O(d) with an error probability of δ = 1
3 . Now, we can construct

the dominance test between p, C via:

p � C =
∨
q∈C

d∧
i=1

pi ≤ qi (2)

We let each dominance test p � q define an oracle for the OR algorithm. We can thus rewrite:

p � C =
∨
q∈C

p � q (3)

This can now be checked in O(d|C| log 1
δ ) time, once again by the bound for OR.

Theorem II Let C ⊆ X and choose a point p ∈ X . If we know the order of C on each dimension, checking v � C
can be done with error probability δ in oracle complexity O

(
d log d|C|

δ

)
.

4



Proof We are given the order of C along each dimension i ∈ [d]. Thus, by direct application of BINARY SEARCH
from section 4 we compute, for each i, the successor of vi on the ith dimension of entries in C with error probability δ

d

in O(log d|C|δ ). Note, however, that once this has been determined, although the computation v � C does not require
further calls to the oracle, it may still require significant computation.

5.2 Control Algorithm

We define the control algorithm FullSort, which functions by sorting the data along each dimension with a given error
probability and then utilizing any noiseless skyline algorithm to compute the final set based on the orderings.

1 FullSort(X, δ):
2 sort X along each dimension
3 compute skyline with noiseless algorithm (assuming orderings are correct)

We note that we are interested in determining the oracle complexity of this function, which is impacted only by step 2.
After ordering the points in X per dimension, the noiseless skyline computation then requires no additional calls to the
oracle.
Oracle Complexity: Each dimension is sorted in (1) with error probability δ

4 . To do this, SORT is utilized from
section 4, which gives us the oracle complexity of

O

(
(nd) log

(nd)

δ

)
(4)

Then, we can take the union bound to get that the orderings are correct with error probability δ. After this, computing
the skyline, line 3 can be done with an algorithm such as that from section 3.1. FullSort thus provides a baseline model
for determining a skyline in the noisy comparison model which we will now build upon.

5.3 Iterative Skyline Recovery

The main algorithms we will consider from both a theoretical and implementation standpoint determine the skyline
given an input set X by computing each point on the skyline, one by one. The implementation of each algorithm as
outlined in the paper can be found in the appendix (section 8).

5.3.1 Skysample

We first consider Skysample, which is reproduced in the appendix from [1], section 8.1. This function computes
iteratively each maximum point (in lexicographic order) among the set of points that are not dominated by the already
found skyline points, and hence are potential additions to the skyline. In addition, it is of note that Skysample can’t
output exactly the whole skyline, since |k| is unknown immediately from the dataset. Instead, an estimated k′′ ≥ k is
used for the computation. We now prove bounds for the oracle and computational complexity of Skysample.

Theorem III Skysample computes the first min{|k|, |k′′|} points in O(kdn log dk′′

δ ) oracle complexity.

Proof First, we consider the oracle for lexicographic comparisons. We denote by Si the set of i items in the skyline of
S, K with the highest lexicographic rank. This oracle can be run in O(d) time with an error probability δ = 1

3 using
Newman’s OR algorithm.1 The algorithm itself then utilizes this oracle, along with the dominance-testing oracle from
section 5.1 to iteratively compute Si+1 from Si. In particular, we utilize Theorem II, from section 5.1, to see that we
obtain a new skyline item in O(dn log dk′′

δ ) with error probability δ
k′′ . Thus, we see that for all the skyline items, we

1Trust preserving algorithms are ones whose error tolerance is determined by those of input oracles. Newman showed that OR
can be computed in O(n) with a trust-preserving algorithm.

5



sum

O

(∑
i<k

dn log
dk′′

δ

)
= O

(
kdn log

dk′′

δ

)
(5)

We union-bound the error probabilities and thus have that the oracle complexity is O =
(
kdn log dk′′

δ

)
with error

probability δ.

Theorem IV Skysample computes the first min{|k|, |k′′|} points in O(k2dn log k′′

δ ) computational complexity.

Proof With the same setup as above, we now use Theorem I from section 5.1 to see that we get the new skyline in
O =

(
idn log k′′

δ

)
with error probability δ

k′′ . Thus, we see that for all the skyline items, we sum

O

(∑
i<k

idn log
k′′

δ

)
= O

(
(k − 1)k

2
dn log

k′′

δ

)
= O

(
k2dn log

k′′

δ

)
(6)

We union-bound the error probabilities and thus have that the oracle complexity is O =
(
k2dn log k′′

δ

)
with error

probability δ.

5.3.2 SkylineHighDim

In Mallmann-Trenn, Mathieu, and Verdugo [2], the authors construct SkylineHighDim along the same iterative
paradigm as the Skysample of Groz and Milo [1]. However, instead of a single function that iteratively computes the
maximum not-dominated point, the algorithm separates the two tasks. As illustrated in Appendix 8.2, SkylineHighDim
first chooses a random point p that is not dominated by points in the current skyline and then computes a lexicographic
maximum within the points that dominate p. This is performed by calling the MaxLex function, whose higher-level
implementation from [2] is presented in 8.3, stores a counter for each point q ∈ X , wherein each iteration consists of a
pairwise comparison between the q1, q2 ∈ X whose counters have the largest values, and a consequent comparison
between q′ = max>lex

{q1, q2} and p. The counter for q′ is increased if q′ dominates p and decreased if it doesn’t
dominate p; the point in the pair which is less lexicographically q 6= q′ is similarly decremented. The values by which
the counter increments or decrements are chosen so that the counter of the desired output mimics random walk biased
up with non-uniform step size and the counters of all other points perform random walks biased downwards. The points
with the largest counters are then routinely compared. From an algorithmic standpoint, lines 3,4 of MaxLex call for an
arbitrary argmax function, whose implementation we vary in order to affect convergence results.

We now theoretically analyze SkylineHighDim and MaxLex, presenting proofs of their correctness and bounds
and showing the areas where we will focus on improving heuristics and implementing algorithm-level changes.
Specifically, we note problems within the provided proof for algorithm MaxLex, which then leads us to implementation
improvements, especially with regards to convergence.

Theorem V Let k ≥ |Skyline(X)|. Then, SkylineHighDim(k,X, δ) outputs the correct skyline with probability
bounded by 1− δ and with expected oracle complexity O =

(
k2d log kn

δ + ndk log k
δ

)
.

Proof We will first show that SkylineHighDim returns min{k, |Skyline(X)|} points with error tolerance δ. To do
this, we consider a separation of the algorithm into two ’phases,’ as denoted in 8.2, and determine the sources of error
from each at any step i.

• Phase 1: The possible error in this phase occurs on line 6 in the pseudocode, where SetDominates (a helper
function that determines, given a set S, point p, and two error parameters, whether ∃q ∈ S such that q

6



dominates p) can incorrectly classify a skyline point as dominated, with error probability at most δ
4k or a

dominated point as not dominated, which happens with probability at most |X|δ4k|X| = δ
4k .2

• Phase 2: In this phase, the only possible error occurs in line 11, where MaxLex returns an incorrect
computation. This happens with probability at most δ

2k , which we will analyze in the proof of the following
theorem.

Thus, we see that we can sum over all i and union-bound, which tells us that the probability of the function being
correct is at least

1−
∑
i

(
δ

4k
+

δ

4k
+

δ

2k

)
= 1− k

(
δ

k

)
= 1− δ (7)

Now, we analyze the oracle complexity of SkylineHighDim. To do this, we note that each point p ∈ X , when passed
to a call of SetDominates, will call at most two oracle comparisons. We then use the complexity result outlined in
the footnotes to get an expected query complexity O(|Si|d log 4k|X|

δ ). We now note O(|Si|) = O(k) since Sk is the
minimum of k and the skyline, both of which are O(k). Moreover, O(log 4k|X|

δ ) = O(log k|X|
δ ). We thus have that the

oracle complexity for each skyline point is

O

(
|Si|d log

4k|X|
δ

)
= O

(
kd log

k|X|
δ

)
(8)

Then, for each non-skyline point the expected query complexity at each step i is O(d log |Si|k
δ ). This expression can be

written

O(d log
|Si|k
δ

) = O(d log
k

δ
log |Si|) = O(d log

k

δ
) (9)

There, we obtained the second equality by noting that O(|Si|) = O(k) since |Si| ≤ k. Finally, we note that in the worst
case, the number of non-skyline points the algorithm would have to query to the oracle is O(|X|). Thus, we have the
oracle complexity for non-skyline points as O(|X|d log k

δ ).
Finally, we conclude by summing the complexities over i ∈ {1, . . . , k} and combining them to get

O

(
k2d log

k|X|
δ

+ k|X|d log
k

δ

)
= O

(
k2d log

kn

δ
+ ndk log

k

δ

)
(10)

Theorem VI There is an algorithm for finding the lexicographical maximum of the values which dominate p in X ,
MaxLex(p,X, δ), that is correct with maximum error probability δ and expected query complexity O(|X|d log(1/δ)).

Note We identify an error in the given proof for this theorem and utilize that insight to generate implementation
improvements.

Incorrect Proof from [2] We first consider a discrete time Markov chain of a random walk (Zτ(t))τ(t)≥0 which
begins at Z0 = log(1/δ), incrementing by +1 with probability p and −1 with probability 1− p until it hits 0 or b, its
absorbing states. For p 6= 1

2 , b, and T = min{t ≥ 0 | Zt ∈ {0, b}}, [4] found that

P (ZT = 0) =

(
1−p
p

)s
−
(

1−p
p

)b
1−

(
1−p
p

)b (11)

For p ≤ 2
3 ,
(

1−p
p

)
≤ 1

2 , this yields:

P (ZT = 0) ≤ 2− log(1/δ) − 2−b

1− 2−b
→ 2− log(1/δ) = δ (12)

2This comes from a lemma in [2] that Dominates, which has an analogous structure to SetDominates with respect to oracle
calls, has expected query complexity O(d).

7



As such, we find that (Zt) > 0 with probability 1− δ for p ≥ 2
3 .

We will attempt to bound the potential error within the MaxLex algorithm, as described in [2], using the probability of
the absorbing state in (Zt)t≥0 above. Let p∗ denote the lexicographical maximum of the values which dominate p in X ,
and let qi1 and qi2 denote the two values chosen to be compared with each other and potentially with p in time-step i. We
consider the discrete-time Markov chain (Y2t)t≥0 for time-steps t, such that it reflects the value of the counter of p∗,
c(p∗), every 2 time-steps. As such, given that p∗ is chosen to be considered, we denote Itinc as the indicator event that
p∗ is incremented positively by 1

2 , at time-step t; Ītinc is thus the indicator event that p∗ is decremented by 1, at time-step
t, where the increment values are specified in MaxLex. We then examine P (Y2(t+1) = i | Y2t = i− 1), the probability
of being checked successfully as the lexical maximum and being dominant over p in two successive time-steps. The
error probability for this, should p∗ be chosen twice, is bounded by the error for lexical comparison, Lex, and the error
for dominance checking, Dominance, should the lexical comparison succeed; both of these sub-algorithms’ errors are
strictly bound by 1

16 by construction, and thus the upper bound for the probability that p∗ is not incremented in one
time-step is 1

16 + 15
16 ·

1
16 <

1
6 . Thus,

P (Y2(t+1) = i | Y2t = i− 1) ≥
(

1− 1

6

)2

>
2

3
≥ P (ZT = 0) (13)

In order for p∗ to not be outputted, c(p∗) ≤ −2 at some timestep t, and as such the probability for this event is
encapsulated in the event that Y2t ≤ 0. This seems to yield the upper bound for MaxLex’s error as:

P (p∗ not outputted by MaxLex) ≤ P (Y2t ≤ 0) ≤ P (Zt ≤ 0) = P (Zt = 0) ≤ δ (14)

Given this, we then note that MaxLex’s increments are constructed such that at the end of each time-step i, the non qi1
and qi2 values are all within 1 of each other, and that the sum of the counters is at most |X| log(1/δ)−i/2, as there is a net
decrement of at least− 1

2 per time-step. If so, then at time-step i ≥ 4(|X|+3)(log(1/δ)+3), the sum of the counters will
be at most −2|X| log(1/δ)− 18|X| < −2|X|(log(1/δ) + 1); since log(1/δ) > 1, this means that every counter which
does not map to qi1 or qi2 must have value < −2. Specifically, c(qi1) + c(qi2) ≤ 2 log(1/δ) + 2(|X|+ 3)(log(1/δ) + 3).
As such, after 6(|X| + 3)(log(1/δ) + 3) more iterations, we note that at least one of c(q1) or c(q2) must be ≤ −1,
which is when the algorithm terminates. Thus, we bound the number of timesteps above by 10(|X|+ 3)(log(1/δ) + 3),
wherein each time-step takes expected O(d) time to compute Lex and Dominance. As such, the overall expected
computational complexity is O(|X|d log(1/δ).

However, the above analysis of (Yt)t≥0 assumes that p∗ = q1 or p∗ = q2 in the round examined, as otherwise c(p∗) is
not chosen and thus will not be able to increment positively in two consecutive rounds; thus, we note that should p∗ be
incorrectly incremented and tie with multiple other counters in value, the probability of being chosen as q1 or q2 may
decrease on the order of 1

n (with the worst-case scenario of all n counters being tied in value) if argmax randomly
chooses among tied counters, or a worst-case of 0 if one or more tied-value counters are closer to the front of the dataset
than p∗. [2] fails to account for the multi-tie situation decreasing probability of being chosen and thus the probability
space for incrementing/decrementing, which leads to P (Y2(t+1) = i | Y2t = i− 1) being potentially less than 2

3 and
thus failing to yield an error of at most δ.

5.4 Skyline Computation and SkyHighDim-Search

Finally, we note that both aforementioned algorithms operate on inputs that include X and δ but not k or |k|, the actual
skyline. The motivation of this approach is to find all the skyline items in an efficient way while having an unknown
skyline cardinality. Thus, they have to run on values k′′ ≥ k. However, once either of the previous algorithms are
implemented, in order to actually compute the skyline, Skyline(X), both Skyline Computation and SkyHighDim-
Search, of which only the former’s code is presented in Appendix 8.4 since the approaches are very similar, guess an
upper bound for |Skyline(X)| by increasing k′′ until the size of the skyline computed with k′′ is less than the size of
k′′.

8



Theorem VII The algorithm Skyline Computation computes with oracle complexity O
(
dkn log dk

δ

)
and computa-

tional complexity O
(
dk2n log k

δ

)
, with error tolerance δ.

Proof To see that the error tolerance is δ, we note that at any step i, the probability of returning the incorrect result is
δ
2i by definition of the algorithm. Thus, the error probability is bounded by∑

i≤log log k

δ

2i
≤ δ (15)

To calculate the oracle and computational complexities, we use the result of Theorems III, IV in section 8.1 to get that
the oracle complexity is

O

dn blog log kc∑
i=1

ki log
dki2

i

δ

+O

(
dkn log

dk

δ

)
= O

(
dkn log

dk

δ

)
(16)

and the computational complexity is

O

dn blog log kc∑
i=1

k2i log
ki2

i

δ

+O

(
dk2n log

k

δ

)
= O

(
dk2n log

k

δ

)
(17)

6 Implementation and Results

6.1 MaxLex Implementation

Because the bound for MaxLex(p,X, δ) using the probability of a random walk’s absorption state does not necessarily
hold, we alter the algorithm’s counter updates from their specified decrement of 1 decrement and increment of 0.5. We
implement this by changing all constant update values to derive from a vector u passed in as argument, where the
default update values correspond to u0 = (1, 0.5, 1,−2). Specifically, we found that increasing the increment value
significantly reduced error probabilities by favoring objects with Pareto dominance over p and thus differentiating
potential p∗ object from the overall set X . Further, a slightly stronger emphasis on decrementing in the case of not
Pareto dominating p (e.g. decrementing by 1.1 rather than 1) also tended to help with error reduction, which may
suggest that the latter half of the algorithm’s, which measures a potential p∗ object’s dominance over p, may be more
important than the comparison of the two objects with the highest-valued counters (particularly in the case of ties).

These increments/decrements do not seem to show consistent improvement over all n, k, or d values, and
we postulate that the optimal update values likely depend on these parameters in some way. Holistically, we note
that larger increment/decrement values seem to yield more significant error improvements for larger n and larger
k; this intuitively follows from the proposed worst-case scenario of an n-way tie in counter values, wherein the
probability of p∗ being chosen to be compared is 2

n−1 , which decreases rapidly with n and is intuitively more likely
to occur should k be large and thus most objects in X be a skyline item. Specifically, lexicographical ordering
may be less informative in this scenario than dominance, which may filter out more of the X values. In Table 1,
we show a particularly strong case for the update value importance in MaxLex within a relatively small dataset
S which has many skyline items which are not Pareto-dominant over (1, 99) but are lexicographically greater
than it. In this case, it is clear that the changing of update values to favor the dominance condition vastly im-
proves error rates from being close to 1 to nearly 0, with little change in mean oracle queries and thus similar complexity.

We further noted that [2] did not specify the formalism for choosing argmaxq∈S(c(q)) in the event of a tie
between multiple counter values within the MaxLex algorithm (lines 3,4 in 8.3). We thus experimented with the
output of MaxLex when using an ArgmaxFirst formalism, which simply chooses the first counter in the list with

9



maximum value, and when using an ArgmaxRandom formalism, which chooses at random one counter from those
with maximum value. As shown in Table 1, ArgmaxRandom significantly outperforms ArgmaxFirst, particularly in
the case with changed update values, where it nearly halved the error rate. This suggests that random tie-breaking is
more useful in helping differentiate q∗, which makes sense as it allows for more symmetry in the solution space.

Furthermore, inspection of several smaller cases showed that MaxLex sometimes terminated before all but
one counter had values less than −2, which was the condition needed for the error bound in Theorem VI. As such, we
also examined the impact of adding an additional condition within MaxLex that all c(q) ≤ −2 for q ∈ X \ q1 before
exiting the while-loop, in order to explicitly check the condition needed for the other counter values to complete the
proof of p∗ error. This condition seemed to improve mean error rates, particularly in the case of the augmented update
values; the latter finding may simply be due to the higher volatility surrounding the update values leading to the need
for stricter conditions on convergence to p∗. However, we also note that the mean and maximum number of oracle
queries significantly rise upon calling for this condition, which signals that the increased iterations needed to satisfy this
condition may not be worth the marginal decrease in error.

MaxLex Statistics
Argmax

Formalism Update Values Additional
Condition

Mean Error
Rate

Mean Oracle
Queries

Maximum Oracle
Queries

Mean Probability
of Incrementing p∗

Median Probability
of Incrementing p∗

First (1, 0.5, 1,−2) No 0.9978 281.01 380 0 0
Random (1, 0.5, 1,−2) No 0.8525 291.5 413 0.0476 0.0625
Random (1, 0.5, 1,−2) Yes 0.8203 350.5 491 0.0491 0.0526
First (1, 4, 3,−2) No 0.0206 165.04 288 0.242 0.25
Random (1, 4, 3,−2) No 0.0131 156.3 330 0.224 0.25
Random (1, 4, 3,−2) Yes 0.0049 283.169 425 0.2651 0.2667

Table 1: Statistics for various implementations of MaxLex run 10, 000 times on the dataset S = {(1, 1), (2, 2), (3, 5),
(7, 7), (1, 99), (99, 1), (97, 5)} for value p = (1, 99), which is meant to return (1, 99).

The implementation of function MaxLex, along with ArgmaxFirst and ArgmaxRandom can be analyzed:

def argmax_lex(a):
return max(enumerate(a), key=lambda a:a[1])[0]

def argmax_rand(a):
b = np.array(a)
return np.random.choice(np.flatnonzero(b == b.max()))

def MaxLex(p, S, delta, deltaMain, use_argmax_lex = True, use_update = (1, 0.5, 1, -2),
expected=None, use_cond = False):
if len(S) == 1:

return S[0], 0
c = []
for i in range(0,len(S)):

c.append(math.log(1/delta))
compl = False
num_calls = 0
if use_argmax_lex:

argmax = lambda x: argmax_lex(x)
else:

argmax = lambda x: argmax_rand(x)
rounds = 0
if expected:

10



ind = S.index(expected)
prev = c[ind]

num_increased = 0
while not compl:

q1Star = argmax(c)
q1 = S[q1Star]

cStar = c[:q1Star] + c[q1Star + 1:]
q2Star = argmax(cStar)
q2Star = q2Star + 1 if q2Star >= q1Star else q2Star
q2 = S[q2Star]

cond1, calls1 = Lex(q1,q2,delta)
num_calls += calls1
if cond1:

x = q1
xStar = q1Star
y = q2Star

else:
x = q2
xStar = q2Star
y = q1Star

c[y] = c[y] - use_update[0]

cond2, calls2 = Dominates(x, p, deltaMain)
num_calls += calls2
if cond2:

c[xStar] = c[xStar] + use_update[1]
else:

c[xStar] = c[xStar] - use_update[2]

cond = (c[q2Star] <= use_update[3])
if len(c) > 2 and use_cond:

remaining = c[:min(q1Star, q2Star)] + c[min(q1Star, q2Star)+1:max(q1Star, q2Star)] +
c[max(q1Star, q2Star)+1:]

cond = cond and np.all([x <= -2 for x in remaining])
if cond:

compl = True
rounds += 1
if expected:

curr = c[ind]
if curr == prev + use_update[1]:

num_increased += 1
else:

num_increased = num_increased
prev = curr

print(c, S)
print(num_increased/rounds)
return S[argmax(c)], num_calls

11



6.2 Skysampling and SkylineHighDim Implementation

The Skysampling algorithm computes max<lex
{p|p 6� S}) by calling MaxLex(p, S, δ

k′′ ), rather than the Oracle
comparison method specified in [1]. This allowed us to better compare the relative efficiency of Skysampling and
SkylineHighDim without the additional differences in lexicographic and dominance computations. We followed the
format of [2] in the high-level implementation of SkylineHighDim. However, we consolidated both as being called
from the general method of sampling for k specified Algorithm 5 in [1], which updates ki = k2i−1 from k0 = 4 for
each i-th iteration, so as to again better compare the relative efficiency of Skysampling and SkylineHighDim. The
algorithms are shown below:

def SkylineHighDim(k, X, delta, deltaMain, use_argmax_lex = True, use_update = (1, 0.5, 1, -2)):
S = []
C = X.copy()
num_calls = 0
for i in range(1,k+1):

#Finding a point p not dominated by current skyline points
found = False
while len(C) > 0 and not found:

p = C[random.randint(0,len(C) -1)]
cond1, calls1 = SetDominates(S, p, delta/(4*k), delta/(4*k*len(X)), deltaMain)
num_calls += calls1
if not cond1:

print(p, S, "not dominated")
found = True

else:
print(p, S, "dominated")
C.remove(p)
# print(C)

if len(C) == 0:
return S, num_calls

else:
#Finding a skyline point that dominates p
pStar, calls2 = MaxLex(p, C, delta/(2*k), deltaMain, use_argmax_lex = use_argmax_lex,

use_update = use_update)
num_calls += calls2
C.remove(pStar)
print(pStar, C)
S.append(pStar)

return S, num_calls

def skysample(khat, s, delta, error, use_argmax_lex = None, use_update = None):
assert len(s) > 0
sky = []
dims = len(s[0])
remaining = set(s)
num_calls = 0
for i in range(khat):

# find non-dominated points
to_remove = []
for r in remaining:

comp, calls = is_dominated(r, sky, delta, error)

12



num_calls += calls
if comp:

to_remove.append(r)
for r in to_remove:

remaining.remove(r)
if len(remaining) > 0:

remaining = list(remaining)
z, calls = MaxLex(remaining[0], remaining, delta/2, error)
num_calls += calls
sky.append(z)
remaining = set(remaining)
remaining.remove(z)

return sky, num_calls

6.3 FullSort Implementation

The FullSort algorithm was implemented in two forms, one which takes general δ for the FullSortControl algorithm
and one with δ = 0 for the NoiselessSkylineComputation algorithm. The latter was used to find the actual skyline C
for any input set X with perfect information, and thus provided a base to compare all other algorithm outputs to for
accuracy. Meanwhile, the FullSortControl algorithm provided a baseline number of oracle complexity, computational
complexity, and output accuracy which can be compared to our more complex algorithm using Skysample and
SkylineHighDim.

def brute_force(s, delta, error):
start = time.time()
n = len(s)
dims = len(s[0])
optimal = []
sorted_i = []
optimal = []
num_calls = 0
for i in range(dims):

s_i, calls = msort2(s, i, error)
num_calls += calls
sorted_i.append(s_i)

changed = True
while changed:

changed = False
for i in range(dims):

optima_i = []
compl = False
curr = -1
while not compl and len(sorted_i[i]) > 0:

dominated, calls = SetDominates(optimal, sorted_i[i][curr], delta/2, delta/2, error)
num_calls += calls
if not np.any(dominated):

optimal.append(sorted_i[i][curr])
changed = True
sorted_i[i].pop(curr)

13



else:
compl = True

# check internally:
new_optimal = []
for i in range(len(optimal)):

sublist = optimal[:i] + optimal[i + 1:]
dominated, calls = SetDominates(sublist, optimal[i], delta/2, delta/2, error)
num_calls += calls
if not dominated:

new_optimal.append(optimal[i])
end = time.time()
return new_optimal, end - start, num_calls

def msort2(x, dim, error):
if len(x) < 2:

return x, 0
num_calls = 0
result = []
mid = int(len(x) / 2)
y, calls1 = msort2(x[:mid], dim, error)
z, calls2 = msort2(x[mid:], dim, error)
num_calls += calls1
num_calls += calls2
while (len(y) > 0) and (len(z) > 0):

comp, calls = BoostProb("oracle", z[0], y[0], dim, error, 1/(16*len(y)), 1/16)
num_calls += calls
if not comp:

result.append(z[0])
z.pop(0)

else:
result.append(y[0])
y.pop(0)

result += y
result += z
return result, num_calls

6.4 Skyline Computation Algorithms Sample Testing and Convergence

We measure the relative accuracy and complexity of each algorithm implemented by the average and maximum values
for 0-1 outputted skyline set accuracy, runtime, and oracle queries. For Skysampling and SkylineHighDim, we
further gauge the relative efficiency by measuring the average and median probability of incrementing p∗ for each call
of MaxLex within the algorithms, to best examine the real-world performance of MaxLex for various n, k, and d.
Finally, we introduce the Hamming distance HD as a metric, which given A,B ⊆ X computes the cardinality of their
symmetric difference:

HD(A,B) = |(A ∪B) \ (A ∩B)| (18)

Specifically, we measure the average and maximum Hamming distances of each algorithm as a more nuanced measure
of outputted skyline set accuracy which can yield a sense of how close an output is to the actual solution, as found by
NoiselessSkylineComputation.

14



Skyline Computation Algorithm Statistics

Model n k d Mean Error Mean Time Mean Oracle
Queries

Mean Probability
of Incrementing p∗

Mean Hamming
Distance

FSC 7 4 2 0.016667 0.00984 8860.25 NaN 0.016667
FSC 10 8 5 0.000333 0.05836 62800.48 NaN 0.0000333
FSC 100 39 5 1.000000 0.20841 2002561.7 NaN 27.973333
SS 7 4 2 0.156667 0.02873 1896.2 0.114525 0.178333
SS 10 8 5 0.400000 0.012918 12431.5 0.210021 0.406667
SS 100 39 5 1.000000 0.959234 101281.4 0.103598 8.240000
SHD 7 4 2 0.273810 0.015900 4352.2 0.568547 0.226190
SHD 10 8 5 0.260952 0.035679 15033.5 0.539881 0.306667
SHD 100 39 5 0.882222 2.713313 100415.7 0.554667 5.970000

Table 2: Statistics for various implementations of skyline computation algorithms (FSC = FullSortControl, SS =
Skysample, SHD = SkylineHighDim) run 1000 times on datasets with the specified size n, skyline set cardinality k,
and dimension d.

Table 2 depicts various statistics for the FullSortControl, Skysample, and SkylineHighDim algorithms (where
the latter use the ArgmaxRandom formalism and update values (1, 4, 3,−2)) which aim to highlight the relative
efficiencies and accuracies of each algorithm. FullSortControl has the highest observed accuracy over the smaller
n = 4, 7 datasets, which suggests a high accuracy on a small scale; however, for n = 100, it performs the worst in terms
of mean Hamming distance, suggesting that the errors from sorting incorrectly build up much more quickly than within
the other two algorithms. Regardless, FullSortControl is extremely fast relative to the other algorithms, which speaks
to the simplicity of the code design. However, the sorting algorithm nearly doubles the mean oracle queries compared
to both Skysample and SkylineHighDim, which indicates that Examining this, we note thatFullSortControl may
therefore be of use for smaller computations which allow for oracles/votes to be tallied in one large batch; should
there be a need for extended rounds of oracle voting, the other computation algorithms may be more useful. We
note that while Skysample used many fewer queries than SkylineHighDim for the n = 7 dataset, the oracle queries
became comparable for n = 7 and n = 100, suggesting that their bounds are asymptotically equivalent and supporting
the findings of [1] and [2]. We further note that while SkylineHighDim has a much higher mean probability of
incrementing p∗, there does not seem to be a particularly strong relationship between that probability and the mean
error, as the error seems to scale with n and k while the probability of incrementing remains essentially constant.
Further, we note that while SkylineHighDim is the only algorithm which did not completely diverge in error for the
n = 100 dataset, and consistently has small mean Hamming distance, showing that its erroneous outputs are not far
from the actual answers, its mean computation time was almost thrice that of Skysample and nearly ten times that of
FullSortControl, signalling that after applying the changes which are necessary for minimizing the error of MaxLex,
the SkylineHighDim algorithm may scale worse with n and k than predicted in [2]. We note that the divergence of
Skysample and SkylineHighDim was lessened through tuning of the update parameters for each; however, we show
the standardized version above to highlight the relative efficiencies.

7 Discussion

In this project, we provide a synthesis of iterative methods for skyline computation with noisy comparisons as published
in [1] and [2]. We then show deficiencies within a proof involving MaxLex in [2] and, with that insight, implement
algorithms with better convergence. Finally, we expand upon the provided algorithms with implementations, small-
dataset stress testing and introduce Hamming Distance as a more nuanced version of accuracy. Further research is
needed on exactly what bounds may be placed on MaxLex and how one may best tune the update parameter to best fit

15



a given dataset; in particular, the impact of the ratio between k and n, which generally represents the "crowdedness" of
a dataset, would be interesting to examine.

References

[1] Benoit Groz and Tova Milo. Skyline queries with noisy comparisons. In Proceedings of the 34th ACM Sigmod-
Sigact-Sigai Symposium on Principles of Database Systems, 2015, pages 185-198. ACM.

[2] Frederik Mallmann-Trenn, Claire Mathieu, and Victor Verdugo. Skyline Computation with Noisy Comparisons
arXiv preprint arXiv:1710.02058, 2017

[3] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing With Noisy Information. In SIAM
Journal on Computing, 23(5), 1994, pages 1001 - 1018.

[4] William Feller. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley, 1968, page 17.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pages 248-255, IEEE.

8 Appendix

The actual implementation code can be found at https://github.com/Saffr0n1/
Iterative-Noisy-Skyline-Comparisons.

8.1 Skysample

We present the pseudocode for Skysample as published in [1].

1 Skysample(S, k’’,δ):
2 S0 = ∅
3 for i in (0,..,k*-1):
4 Compute z = max<lex{p|p 6� S} with error tolerance δ

k′′

5 if z = ∅ return Si

6 else Si+1 = Si
⋃
z

7 return Sk

We also define the oracle for <lex (p, p′, δ) as

1 Find l1 = min{i|pi < p′i} with error probability δ
2

2 Find l2 = min{i|pi > p′i} with error probability δ
2

3 if (l2 = Null or l1 � l2) return true
4 else return false

Here, the oracle and function are shown in separate blocks for visual clarity, although in the paper, they are subparts of
the same overall Skysample function.

8.2 SkylineHighDim

We present the pesudocode for SkylineHighDim as published in [2].

1 SkylineHighDim(k, X,δ):
2 S0 = ∅
3 C = X

16

https://github.com/Saffr0n1/Iterative-Noisy-Skyline-Comparisons
https://github.com/Saffr0n1/Iterative-Noisy-Skyline-Comparisons


3 for i in (0,..,k):
4 ’Phase 1: finding p which is not dominated by current skyline’
5 while C not empty:
6 pick arbitrary p ∈ C
7 if not SetDominates(Si, p, δ/4k, δ/4k|X|:
8 break
9 C = C \ {p}
10 ’Phase 2: computing lexicographic maximum of the values which Pareto dominate p’
11 p’’ = MaxLex(C, p, δ/2k)
12 Si = Si−1

⋃
{p′′}

13 return Sk

8.3 MaxLex

We present the pseudocode for MaxLex as published in [2].

1 MaxLex(p, X,δ):
2 c(q) = log(1/δ) for all q ∈ X
3 q1 = argmaxq∈Sc(q)
4 q2 = argmaxq∈S\{q1}c(q)
5 while c(q2) > −2:
6 if Lex(q1, q2):
7 x = q1, y = q2

8 else:
9 y = q1, x = q2

10 c(y) = c(y)− 1

11 if Dominates(x, p):
12 c = c+ 1

2

13 else:
14 c = c− 1

15 return argmaxq∈Sc(q)

8.4 Skyline Computation

Both skyline computation algorithms function on the same principle so only the algorithm from [1] is shown for space
considerations.

1 Skyline_computation(S, δ)
2 i = 1; ki = 4; compl = false
3 while compl= false:
4 R = SkySample(S, ki, δ2i )
5 if |R| < ki:
6 compl = true
7 else:
8 i = i+1
9 ki = 22

i

10 return R

17


	Introduction
	Preliminary Definitions
	Motivation
	Noiseless Skyline Model
	Adding Noise to Model Real Data

	Basic Noisy Comparisons
	Theoretical Discussion of Skyline Computation
	Dominance Testing
	Control Algorithm
	Iterative Skyline Recovery
	Skysample
	SkylineHighDim

	Skyline Computation and SkyHighDim-Search

	Implementation and Results
	MaxLex Implementation
	Skysampling and SkylineHighDim Implementation
	FullSort Implementation
	Skyline Computation Algorithms Sample Testing and Convergence

	Discussion
	Appendix
	Skysample
	SkylineHighDim
	MaxLex
	Skyline Computation


